000062565 001__ 62565
000062565 005__ 20240708132840.0
000062565 0247_ $$2DOI$$a10.1016/j.memsci.2008.03.074
000062565 0247_ $$2WOS$$aWOS:000257834700003
000062565 0247_ $$2altmetric$$aaltmetric:8183129
000062565 037__ $$aPreJuSER-62565
000062565 041__ $$aeng
000062565 082__ $$a570
000062565 084__ $$2WoS$$aEngineering, Chemical
000062565 084__ $$2WoS$$aPolymer Science
000062565 1001_ $$0P:(DE-HGF)0$$aSunarso, J.$$b0
000062565 245__ $$aMixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation
000062565 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2008
000062565 300__ $$a13 - 41
000062565 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000062565 3367_ $$2DataCite$$aOutput Types/Journal article
000062565 3367_ $$00$$2EndNote$$aJournal Article
000062565 3367_ $$2BibTeX$$aARTICLE
000062565 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000062565 3367_ $$2DRIVER$$aarticle
000062565 440_0 $$03536$$aJournal of Membrane Science$$v320$$x0376-7388
000062565 500__ $$aRecord converted from VDB: 12.11.2012
000062565 520__ $$aAlthough Nernst observed ionic conduction of zirconia-yttria solutions in 1899, the field of oxygen separation research remained dormant. In the last 30 years, research efforts by the scientific community intensified significantly, stemming from the pioneering work of Takahashi and co-workers, with the initial development of mixed ionic-electronic conducting (MIEC) oxides. A large number of MIEC compounds have been synthesized and characterized since then, mainly based on perovskites (ABO(3-delta) and A(2)BO(4 +/-delta)) and fluorites (A(delta)B(1-delta)O(2-delta) and A(2 delta)B(2-2 delta)O(3)), or dual-phases by the introduction of metal or ceramic elements. These compounds form dense ceramic membranes, which exhibit significant oxygen ionic and electronic conductivity at elevated temperatures. in turn, this process allows for the ionic transport of oxygen from air due to the differential partial pressure of oxygen across the membrane, providing the driving force for oxygen ion transport. As a result, defect-free synthesized membranes deliver 100% pure oxygen. Electrons involved in the electrochemical oxidation and reduction of oxygen ions and oxygen molecules respectively are transported in the opposite direction, thus ensuring overall electrical neutrality. Notably, the fundamental application of the defect theory was deduced to a plethora of MIEC materials over the last 30 years, providing the understanding of electronic and ionic transport, in particular when dopants are introduced to the compound of interest. As a consequence, there are many special cases of ionic oxygen transport limitation accompanied by phase changes, depending upon the temperature and oxygen partial pressure operating conditions. This paper aims at reviewing all the significant and relevant contribution of the research community in this area in the last three decades in conjunction with theoretical principles. (C) 2008 Elsevier B.V. All rights reserved.
000062565 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000062565 588__ $$aDataset connected to Web of Science
000062565 650_7 $$2WoSType$$aJ
000062565 65320 $$2Author$$adense ceramic membrane
000062565 65320 $$2Author$$amixed ionic-electronic conduction
000062565 65320 $$2Author$$afluorite
000062565 65320 $$2Author$$aperovskite
000062565 65320 $$2Author$$atransport mechanisms
000062565 65320 $$2Author$$asynthesis methods
000062565 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b1$$uFZJ
000062565 7001_ $$0P:(DE-HGF)0$$aSerra, J. M.$$b2
000062565 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b3$$uFZJ
000062565 7001_ $$0P:(DE-HGF)0$$aLiu, S.$$b4
000062565 7001_ $$0P:(DE-HGF)0$$aLin, Y.S.$$b5
000062565 7001_ $$0P:(DE-HGF)0$$aDiniz da Costa, J.C.$$b6
000062565 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2008.03.074$$gVol. 320, p. 13 - 41$$p13 - 41$$q320<13 - 41$$tJournal of membrane science$$v320$$x0376-7388$$y2008
000062565 8567_ $$uhttp://dx.doi.org/10.1016/j.memsci.2008.03.074
000062565 909CO $$ooai:juser.fz-juelich.de:62565$$pVDB
000062565 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000062565 9141_ $$y2008
000062565 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000062565 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000062565 970__ $$aVDB:(DE-Juel1)99040
000062565 980__ $$aVDB
000062565 980__ $$aConvertedRecord
000062565 980__ $$ajournal
000062565 980__ $$aI:(DE-Juel1)IEK-1-20101013
000062565 980__ $$aUNRESTRICTED
000062565 981__ $$aI:(DE-Juel1)IMD-2-20101013
000062565 981__ $$aI:(DE-Juel1)IEK-1-20101013