000062613 001__ 62613
000062613 005__ 20240709074245.0
000062613 0247_ $$2pmid$$apmid:18436741
000062613 0247_ $$2DOI$$a10.1126/science.1153966
000062613 0247_ $$2WOS$$aWOS:000256233000034
000062613 0247_ $$2ISSN$$a1095-9203
000062613 0247_ $$2altmetric$$aaltmetric:749141
000062613 037__ $$aPreJuSER-62613
000062613 041__ $$aeng
000062613 082__ $$a500
000062613 084__ $$2WoS$$aMultidisciplinary Sciences
000062613 1001_ $$0P:(DE-HGF)0$$aTilmes, S.$$b0
000062613 245__ $$aThe Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes
000062613 260__ $$aWashington, DC [u.a.]$$bAmerican Association for the Advancement of Scienc$$c2008
000062613 300__ $$a1201 - 1204
000062613 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000062613 3367_ $$2DataCite$$aOutput Types/Journal article
000062613 3367_ $$00$$2EndNote$$aJournal Article
000062613 3367_ $$2BibTeX$$aARTICLE
000062613 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000062613 3367_ $$2DRIVER$$aarticle
000062613 440_0 $$05432$$aScience$$v320$$x0036-8075
000062613 500__ $$aRecord converted from VDB: 12.11.2012
000062613 520__ $$aThe large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.
000062613 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000062613 588__ $$aDataset connected to Web of Science, Pubmed
000062613 650_7 $$2WoSType$$aJ
000062613 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b1$$uFZJ
000062613 7001_ $$0P:(DE-HGF)0$$aSalawitch, R.$$b2
000062613 773__ $$0PERI:(DE-600)2066996-3$$a10.1126/science.1153966$$gVol. 320, p. 1201 - 1204$$p1201 - 1204$$q320<1201 - 1204$$tScience$$v320$$x0036-8075$$y2008
000062613 8567_ $$uhttp://dx.doi.org/10.1126/science.1153966
000062613 909CO $$ooai:juser.fz-juelich.de:62613$$pVDB
000062613 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000062613 9141_ $$y2008
000062613 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000062613 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000062613 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000062613 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000062613 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000062613 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000062613 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000062613 970__ $$aVDB:(DE-Juel1)99137
000062613 980__ $$aVDB
000062613 980__ $$aConvertedRecord
000062613 980__ $$ajournal
000062613 980__ $$aI:(DE-Juel1)IEK-7-20101013
000062613 980__ $$aUNRESTRICTED
000062613 981__ $$aI:(DE-Juel1)ICE-4-20101013
000062613 981__ $$aI:(DE-Juel1)IEK-7-20101013