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1 Introduction

Long range interactions between particles often play an important role in biomolecular
simulations in order to describe the structure and dynamicsof particles correctly. The
calculation of this type of interaction often limits the time and length scale of a simulation,
since it scales asO(N2), whereN is the number of particles in the system. In order to
overcome this limitation, different types of fast algorithms of orderO(N logN) or O(N)
were developed (for an overview see e.g. Ref. 1,2). One of this type of algorithms is based
on a Wavelet transform technique3. A computationally intensive part consists in preparing
the 2d-Wavelet transform of inverse distances between fixedgrid points in space, onto
which particle properties are transferred. Since the grid is static, this computational intense
part has only to be performed once. Due to memory requirements and performance, it is
desirable to perform these calculations on a scalable computer architecture. To this end
the Cell Broadband Engine (Cell/B.E.) heterogeneous multicore processor was chosen to
explore its capabilities and high potential in performance. The processor characteristics
include multiple heterogeneous execution units, SIMD processing engines, fast local store
and a software managed cache. Applications can achieve a performance which is close to
the theoretical peak performance if specific features are respected.

In the present work an implementation of the fast 2d-Wavelettransform, realized via a
triple matrix multiplication, was developed using the native programming API of the IBM
Software Development Kit (CellSDK4). In this implementation the architectural require-
ments of the Cell processor are taken into account and Cell specific optimizations are ap-
plied where practical. Therewith, the difficulties and problems in porting code to Cell/B.E.
and using sparse linear algebra operations on the Cell processor are assessed. Finally the
results of the native implementation are discussed and compared to the results of the same
algorithm implemented via the Cell Superscalar framework (CellSs5), a high-level portable
programming model.

2 Method

The method of calculating Coulomb potentials with the help of Wavelets was described
in Ref. 3. Here, we concentrate on the description on how to calculate the triple-matrix-
multiply

Ã̃ÃAt = T{WWWl AAA WWW
T
l ; t} (1)
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Figure 1. Structure of matricesWWWl (left) for a Daubechies-4 Wavelet-basis (details are shownin the insets) and
Ã̃ÃAt (right) with threshold valuet = 0.01 and compression rateχ = 81%.

where the matrixWWWl is the resulting Wavelet transform matrix on levell, which is sparse
and contains both the Wavelet and scaling coefficients. The structure of this matrix is
displayed in Fig.1. On the other hand the matrixAAA ∈ R

Ng×Ng is dense, as it contains the
inverse distances between equi-spaced grid points, whereNg is the number of grid points
in the system. SinceNg ∝ N , the dimension of the matrix may become rather large, which
requires an economic memory management. Finally,Ã̃ÃAt is a thresholded Wavelet transform
of AAA, which results from the threshold operationT{. ; t}, where all absolute values below
a given valuet are set to zero.

In order to apply the method also to larger problem sizes, theWavelet matrixWWWl is
partitioned and transferred in parts to the SPU. Information about the matrix is stored
in Compressed Sparse Row (CSR) format6, for which four arrays are introduced: (i) the
elements of the matrix,j elem ; (ii) column index of n-th element,j index ; (iii) offset
value,nnn off , in order to address the first element of rowi; (iv) number of elements of
row i, nj w.

The partitioning ofWWWl does not guarantee that every block of data contains complete
rows. Transferring incomplete rows to the SPU would, however, increase the complexity
of the computation algorithm. A possible method to avoid splitting of rows consists in
padding. Therefore, in order to align the arrayj elem a second array has to be allocated
where rows ofWWWl are grouped into 16 kB blocks. If one row is split by a block border
the complete row is put into the next block and the current block is filled by padding. The
handling of arrayj index proceeds analogously. The rows ofWWWl do not always contain
the same number of non-zeros. Therefore, an array is introduced which stores the number
of rows in each block. Using this block information the corresponding elements of arrays
nnn off andnj w can be loaded. Note, that these arrays are not aligned. Therefore it
is necessary to expand the needed part to an aligned extract which contains all the data
actually required.

In the present implementation, the matrixÃ̃ÃAt is calculated column by column in two
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Figure 2. Timings for a native implementation of the algorithm and for the CellSs implementation for Wavelet
transforms of different levell. CellSs outperforms the native implementation, since features like double-buffering
are not considered in the native version.

steps as follows7 (for different implementations cf. Ref. 8)

Ã̃ÃA = WWWl AAA WWW
T
l ⇒ ã̃ãaq = WWWl × (AAA ×wwwTq ) (2)

In this equatioñããaq is theq-th column of the result matrix̃ÃÃA andwwwTq is theq-th column of

the transposed Wavelet matrixWWW
T
l . In the first step the intermediate resultbbbq = AAA ×wwwTq

is calculated. In the second step theq-th column ofÃ̃ÃA is calculated viãããaq = WWWl × bbbq.
These steps have to be repeated for each of theN columns. In the implementation of
this algorithm the intermediate resultbbbq is buffered in a temporary array on the SPU. To
decrease DMA transfers this intermediate array is not transferred back to the PPU.

The two main aspects which are to be considered for this application are the amount of
data and the number of floating point operations on the SPU. Since for realistic applications
Ng ≈ 323, the size ofAAA easily exceeds the memory capacities of the SPU (256 kB). How-
ever, considering the inverse distance matrix in detail, reveals that full storage of elements
contains a lot of redundency. IfNg = n3 there areNg(Ng − 1) distances between grid
points, of which onlyn(n+ 1)(n+ 2)/6− 1 are different. Therefore, only non-redundant
data are calculated on the PPU and transferred to the SPU, where an addressing of matrix
elements is performed in order to map a three-dimensional grid onto a two-dimensional
matrix. That means that it is enough to storeO(Ng) values for the kernel ofAAA instead
of O(N2

g ) because of redundant entries. The Wavelet matrixWWWl is blocked and loaded

blockwise onto the SPUs, wherẽÃÃA is then calculated in two steps column by column and
then thresholded. The intermediate result is buffered on the SPU and not transferred back
to the PPU.
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3 Results

A native programming approach was compared to one, where CellSs was used. Fig. 2
shows the result of this comparison for Wavelet transforms of different sizesNg and levels
l for a Haar-Wavelet transform.

As a first result it is found that the scaling of the algorithm is O(N2
g ), as it could be

expected for a sparse-dense-sparse matrix multiply. This result, however, shows that (i) the
algorithm is efficiently implemented and (ii) with increasing problem size the PPU-SPU-
communication is not a limiting factor. This leads to optimism for increasing problem
sizes.

As a second result it is seen that the CellSs based implementation outperforms the na-
tive implementation in all cases by about 10-20%. This prooves that CellSs is not only a
very nice tool to ease Cell programming, but that it is also able to produce high perfor-
mance code. The reason for the difference of the two approaches may be found in neglect-
ing SIMD vectorization and features like double buffering in the native implementation.
Since the complexity of the code already was large, these features were postponed in first
instance. The result shows that CellSs leads to very good performance while reducing the
programming effort at the same time.
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