001     62830
005     20180211164010.0
024 7 _ |2 pmid
|a pmid:18036571
024 7 _ |2 pmc
|a pmc:PMC2244683
024 7 _ |2 DOI
|a 10.1016/j.bbapap.2007.10.010
024 7 _ |2 WOS
|a WOS:000253013200025
037 _ _ |a PreJuSER-62830
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Zimmermann, O.
|b 0
|u FZJ
|0 P:(DE-Juel1)132307
245 _ _ |a Understanding protein folding: Small proteins in silico
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2008
300 _ _ |a 252 - 258
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a BBA - Proteins and Proteomics
|x 1570-9639
|0 19421
|y 1
|v 1784
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Computational Biology: methods
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Monte Carlo Method
650 _ 2 |2 MeSH
|a Protein Conformation
650 _ 2 |2 MeSH
|a Protein Folding
650 _ 2 |2 MeSH
|a Proteins: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Proteins
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a protein folding
653 2 0 |2 Author
|a aggregation
653 2 0 |2 Author
|a generalized-ensemble sampling
653 2 0 |2 Author
|a structure prediction
700 1 _ |a Hansmann, U. H. E.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB46160
773 _ _ |a 10.1016/j.bbapap.2007.10.010
|g Vol. 1784, p. 252 - 258
|p 252 - 258
|q 1784<252 - 258
|0 PERI:(DE-600)2209540-8
|t Biochimica et biophysica acta / Proteins and proteomics
|v 1784
|y 2008
|x 1570-9639
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2244683
909 C O |o oai:juser.fz-juelich.de:62830
|p VDB
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k NIC
|l John von Neumann - Institut für Computing
|g NIC
|0 I:(DE-Juel1)NIC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)99681
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21