001     62881
005     20180211162743.0
024 7 _ |2 DOI
|a 10.1016/j.mee.2008.01.101
024 7 _ |2 WOS
|a WOS:000257413400034
037 _ _ |a PreJuSER-62881
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Optics
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Meier, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB55622
245 _ _ |a Nanoimprint for future non-volatile memory and logic devices
260 _ _ |a [S.l.] @
|b Elsevier
|c 2008
300 _ _ |a 870 - 872
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Microelectronic Engineering
|x 0167-9317
|0 4347
|v 85
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Nanoimprint lithography (NIL) is used to realize next generation memory and logic devices. The simple device structure consists of a resistance switching material sandwiched between two metal nanoelectrodes. Bottom and top electrodes are aligned perpendicular to each other building a crossbar array structure. A significant advantage of these future devices in addition to its simplicity is the high integration density. Crossbar arrays with 200 nm electrodes and single cross junctions with 30 nm electrodes were achieved using UV NIL. The bottom electrodes were embedded and planarized by spin on glass, such that an even surface for the realization of the top electrodes by UV NIL could be obtained. Finally electrical measurements demonstrated the function of the fabricated devices. (c) 2008 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a nanoimprint lithography
653 2 0 |2 Author
|a crossbar array
653 2 0 |2 Author
|a memory and logic devices
700 1 _ |a Nauenheim, C.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB61380
700 1 _ |a Gilles, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB67357
700 1 _ |a Mayer, D.
|b 3
|u FZJ
|0 P:(DE-Juel1)128707
700 1 _ |a Kügeler, C.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB15125
700 1 _ |a Waser, R.
|b 5
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1016/j.mee.2008.01.101
|g Vol. 85, p. 870 - 872
|p 870 - 872
|q 85<870 - 872
|0 PERI:(DE-600)1497065-x
|t Microelectronic engineering
|v 85
|y 2008
|x 0167-9317
856 7 _ |u http://dx.doi.org/10.1016/j.mee.2008.01.101
909 C O |o oai:juser.fz-juelich.de:62881
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-2
|l Bioelektronik
|0 I:(DE-Juel1)IBN-2-20090406
|x 1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)99785
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBN-2-20090406
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21