001     62919
005     20240708132818.0
024 7 _ |2 DOI
|a 10.1016/j.ssi.2008.02.046
024 7 _ |2 WOS
|a WOS:000259276200020
037 _ _ |a PreJuSER-62919
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a van Gestel, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61604
245 _ _ |a Manufacturing of new nano-structured ceramic-metallic composite microporous membranes consisting of ZrO2, Al2O3, TiO2 and stainless steel
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2008
300 _ _ |a 1360 - 1366
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Solid State Ionics
|x 0167-2738
|0 5565
|v 179
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Frequently, the membrane employed in a traditional nano-filtration (NF) or gas separation (GS) membrane device consists of a polymeric material, having significant disadvantages including a restricted mechanical, chemical and thermal stability. As an alternative for the polymeric membranes, ceramic membranes with an improved stability have been introduced, but the current membranes still suffer from stability problems (e.g. brittle material, restricted chemical stability in water vapour). This paper reports the preparation of novel hybrid metallic-ceramic membranes, based on a porous 316L stainless-steel support material. The optimized membranes were made by deposition of a fine suspension with a particle size of similar to 180 nm, a colloidal sol with a particle size of similar to 30 nm and a nano-particle sol with a particle size of similar to 5 nm and show a comparable multilayer structure as current ceramic membranes for micro-, ultra- and nano-filtration and gas separation. The essential new features of the membranes include the use of an alternative metallic support material, which provides a high mechanical stability to the membrane, and the application of zirconia- and titania based functional membrane layers, which display a high chemical and thermal stability for potential filtration or gas separation applications. (C) 2008 Elsevier B.V. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a porous metallic support
653 2 0 |2 Author
|a macroporous membrane
653 2 0 |2 Author
|a mesoporous membrane
653 2 0 |2 Author
|a microporous membrane
653 2 0 |2 Author
|a ZrO2
700 1 _ |a Sebold, D.
|b 1
|u FZJ
|0 P:(DE-Juel1)129662
700 1 _ |a Meulenberg, W. A.
|b 2
|u FZJ
|0 P:(DE-Juel1)129637
700 1 _ |a Bram, M.
|b 3
|u FZJ
|0 P:(DE-Juel1)129591
700 1 _ |a Buchkremer, H. P.
|b 4
|u FZJ
|0 P:(DE-Juel1)129594
773 _ _ |a 10.1016/j.ssi.2008.02.046
|g Vol. 179, p. 1360 - 1366
|p 1360 - 1366
|q 179<1360 - 1366
|0 PERI:(DE-600)1500750-9
|t Solid state ionics
|v 179
|y 2008
|x 0167-2738
856 7 _ |u http://dx.doi.org/10.1016/j.ssi.2008.02.046
909 C O |o oai:juser.fz-juelich.de:62919
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB809
|x 0
970 _ _ |a VDB:(DE-Juel1)99852
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21