000006389 001__ 6389 000006389 005__ 20200423202603.0 000006389 0247_ $$2DOI$$a10.1071/FP09095 000006389 0247_ $$2WOS$$aWOS:000271464600008 000006389 0247_ $$2altmetric$$aaltmetric:847673 000006389 037__ $$aPreJuSER-6389 000006389 041__ $$aeng 000006389 082__ $$a580 000006389 084__ $$2WoS$$aPlant Sciences 000006389 1001_ $$0P:(DE-Juel1)129337$$aJansen, M.$$b0$$uFZJ 000006389 245__ $$aSimultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants 000006389 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2009 000006389 300__ $$a902 - 914 000006389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000006389 3367_ $$2DataCite$$aOutput Types/Journal article 000006389 3367_ $$00$$2EndNote$$aJournal Article 000006389 3367_ $$2BibTeX$$aARTICLE 000006389 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000006389 3367_ $$2DRIVER$$aarticle 000006389 440_0 $$09141$$aFunctional Plant Biology$$v36$$x1445-4408$$y11 000006389 500__ $$aB. Biskup and S. Tittmann acknowledge support of their PhD theses by the Heinrich-Heine University of Dusseldorf, Germany. We are grateful to I.-L. Lai and R. Poire for testing earlier versions of the setup in preliminary experiments and to B. Uhlig, M. Schmitz and B. Greve for assisting in plant cultivation. We thank K. H. Kjaer and S. Matsubara for constructive comments on earlier versions of this manuscript. 000006389 520__ $$aStress caused by environmental factors evokes dynamic changes in plant phenotypes. In this study, we deciphered simultaneously the reaction of plant growth and chlorophyll fluorescence related parameters using a novel approach which combines existing imaging technologies (GROWSCREEN FLUORO). Three different abiotic stress situations were investigated demonstrating the benefit of this approach to distinguish between effects related to (1) growth, (2) chlorophyll-fluorescence, or (3) both of these aspects of the phenotype. In a drought stress experiment with more than 500 plants, poly(ADP-ribose) polymerase (PARP) deficient lines of Arabidopsis thaliana (L.) Heynh showed increased relative growth rates (RGR) compared with C24 wild-type plants. In chilling stress, growth of PARP and C24 lines decreased rapidly, followed by a decrease in F-v/F-m. Here, PARP-plants showed a more pronounced decrease of F-v/F-m than C24, which can be interpreted as a more efficient strategy for survival in mild chilling stress. Finally, the reaction of Nicotiana tabacum L. to altered spectral composition of the intercepted light was monitored as an example of a moderate stress situation that affects chlorophyll-fluorescence related, but not growth-related parameters. The examples investigated in this study show the capacity for improved plant phenotyping based on an automated and simultaneous evaluation of growth and photosynthesis at high throughput. 000006389 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000006389 588__ $$aDataset connected to Web of Science 000006389 65320 $$2Author$$achilling stress 000006389 65320 $$2Author$$adrought 000006389 65320 $$2Author$$adynamic processes 000006389 65320 $$2Author$$aimage processing 000006389 65320 $$2Author$$aNicotiana tabacum 000006389 65320 $$2Author$$aPARP 000006389 65320 $$2Author$$aphenomics 000006389 650_7 $$2WoSType$$aJ 000006389 7001_ $$0P:(DE-Juel1)VDB461$$aGilmer, F.$$b1$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)VDB62682$$aBiskup, B.$$b2$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)129373$$aNagel, K. A.$$b3$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b4$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)129315$$aFischbach, A.$$b5$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)VDB5096$$aBriem, S.$$b6$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)129308$$aDreissen, G.$$b7$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)VDB74003$$aTittmann, S.$$b8$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)VDB34478$$aBraun, S.$$b9$$uFZJ 000006389 7001_ $$0P:(DE-HGF)0$$aDe Jaeger, I.$$b10 000006389 7001_ $$0P:(DE-HGF)0$$aMetzlaff, M.$$b11 000006389 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b12$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)129394$$aScharr, H.$$b13$$uFZJ 000006389 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b14$$uFZJ 000006389 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP09095$$gVol. 36, p. 902 - 914$$p902 - 914$$q36<902 - 914$$tFunctional plant biology$$v36$$x1445-4408$$y2009 000006389 8567_ $$uhttp://dx.doi.org/10.1071/FP09095 000006389 8564_ $$uhttps://juser.fz-juelich.de/record/6389/files/FZJ-6389.pdf$$yRestricted$$zPublished final document. 000006389 909CO $$ooai:juser.fz-juelich.de:6389$$pVDB 000006389 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000006389 9141_ $$y2009 000006389 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000006389 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1 000006389 970__ $$aVDB:(DE-Juel1)114663 000006389 980__ $$aVDB 000006389 980__ $$aConvertedRecord 000006389 980__ $$ajournal 000006389 980__ $$aI:(DE-Juel1)IBG-2-20101118 000006389 980__ $$aUNRESTRICTED 000006389 981__ $$aI:(DE-Juel1)IBG-2-20101118 000006389 981__ $$aI:(DE-Juel1)ICG-3-20090406