000006583 001__ 6583
000006583 005__ 20180208230825.0
000006583 0247_ $$2DOI$$a10.1088/0022-3727/42/8/085003
000006583 0247_ $$2WOS$$aWOS:000265248300026
000006583 037__ $$aPreJuSER-6583
000006583 041__ $$aeng
000006583 082__ $$a530
000006583 084__ $$2WoS$$aPhysics, Applied
000006583 1001_ $$0P:(DE-HGF)0$$aOzdogan, K.$$b0
000006583 245__ $$aTuning the magnetic properties of half-metallic semi-Heusler alloys by sp-electron substitution: the case of AuMnSn1-xSbx quaternary alloys
000006583 260__ $$aBristol$$bIOP Publ.$$c2009
000006583 300__ $$a085003
000006583 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000006583 3367_ $$2DataCite$$aOutput Types/Journal article
000006583 3367_ $$00$$2EndNote$$aJournal Article
000006583 3367_ $$2BibTeX$$aARTICLE
000006583 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000006583 3367_ $$2DRIVER$$aarticle
000006583 440_0 $$03700$$aJournal of Physics D - Applied Physics$$v42$$x0022-3727$$y8
000006583 500__ $$aRecord converted from VDB: 12.11.2012
000006583 520__ $$aWe study the electronic and magnetic properties of the quaternary AuMnSn1-xSbx Heusler alloys using first principles calculations. We determine their magnetic phase diagram and show that they present a phase transition from a ferromagnetic (FM) to an antiferromagnetic (AFM) state with increasing Sb concentration. For large Sb concentrations the AFM superexchange coupling dominates over the FM RKKY-like exchange mechanism. This behaviour is similar to that demonstrated by the isovalent Ni1-xCuxMnSb alloy studied recently by the authors (Galanakis et al 2008 Phys. Rev. B 77 214417). Thus the variation of the concentration of the sp-electrons (Sn and Sb atoms) in the AuMnSn1-xSbx compound and the variation of the concentration of the non-magnetic 3d atoms (Cu) in Ni1-xCuxMnSb lead to a similar tuning of the magnetic properties of the two Heusler alloys. We show that the inclusion of correlation effects does not alter the phase diagram of the AuMnSn1-xSbx compound. The calculated results are in good agreement with the available experimental data.
000006583 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000006583 588__ $$aDataset connected to Web of Science
000006583 650_7 $$2WoSType$$aJ
000006583 7001_ $$0P:(DE-Juel1)VDB63896$$aSasioglu, E.$$b1$$uFZJ
000006583 7001_ $$0P:(DE-HGF)0$$aGalanakis, I.$$b2
000006583 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/42/8/085003$$gVol. 42, p. 085003$$p085003$$q42<085003$$tJournal of physics / D$$v42$$x0022-3727$$y2009
000006583 8567_ $$uhttp://dx.doi.org/10.1088/0022-3727/42/8/085003
000006583 909CO $$ooai:juser.fz-juelich.de:6583$$pVDB
000006583 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000006583 9141_ $$y2009
000006583 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000006583 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000006583 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000006583 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000006583 970__ $$aVDB:(DE-Juel1)114921
000006583 980__ $$aVDB
000006583 980__ $$aConvertedRecord
000006583 980__ $$ajournal
000006583 980__ $$aI:(DE-Juel1)PGI-1-20110106
000006583 980__ $$aI:(DE-Juel1)IAS-1-20090406
000006583 980__ $$aI:(DE-82)080009_20140620
000006583 980__ $$aUNRESTRICTED
000006583 981__ $$aI:(DE-Juel1)PGI-1-20110106
000006583 981__ $$aI:(DE-Juel1)IAS-1-20090406
000006583 981__ $$aI:(DE-Juel1)VDB881