001     6583
005     20180208230825.0
024 7 _ |2 DOI
|a 10.1088/0022-3727/42/8/085003
024 7 _ |2 WOS
|a WOS:000265248300026
037 _ _ |a PreJuSER-6583
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Ozdogan, K.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Tuning the magnetic properties of half-metallic semi-Heusler alloys by sp-electron substitution: the case of AuMnSn1-xSbx quaternary alloys
260 _ _ |a Bristol
|b IOP Publ.
|c 2009
300 _ _ |a 085003
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics D - Applied Physics
|x 0022-3727
|0 3700
|y 8
|v 42
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We study the electronic and magnetic properties of the quaternary AuMnSn1-xSbx Heusler alloys using first principles calculations. We determine their magnetic phase diagram and show that they present a phase transition from a ferromagnetic (FM) to an antiferromagnetic (AFM) state with increasing Sb concentration. For large Sb concentrations the AFM superexchange coupling dominates over the FM RKKY-like exchange mechanism. This behaviour is similar to that demonstrated by the isovalent Ni1-xCuxMnSb alloy studied recently by the authors (Galanakis et al 2008 Phys. Rev. B 77 214417). Thus the variation of the concentration of the sp-electrons (Sn and Sb atoms) in the AuMnSn1-xSbx compound and the variation of the concentration of the non-magnetic 3d atoms (Cu) in Ni1-xCuxMnSb lead to a similar tuning of the magnetic properties of the two Heusler alloys. We show that the inclusion of correlation effects does not alter the phase diagram of the AuMnSn1-xSbx compound. The calculated results are in good agreement with the available experimental data.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Sasioglu, E.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB63896
700 1 _ |a Galanakis, I.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0022-3727/42/8/085003
|g Vol. 42, p. 085003
|p 085003
|q 42<085003
|0 PERI:(DE-600)1472948-9
|t Journal of physics / D
|v 42
|y 2009
|x 0022-3727
856 7 _ |u http://dx.doi.org/10.1088/0022-3727/42/8/085003
909 C O |o oai:juser.fz-juelich.de:6583
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)114921
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21