000006841 001__ 6841
000006841 005__ 20240708134001.0
000006841 0247_ $$2WOS$$aWOS:000272163800057
000006841 037__ $$aPreJuSER-6841
000006841 041__ $$aeng
000006841 082__ $$a530
000006841 084__ $$2WoS$$aNuclear Science & Technology
000006841 1001_ $$0P:(DE-Juel1)VDB72509$$aProlingheuer, N.$$b0$$uFZJ
000006841 245__ $$aEstimating Dose Rates from Activated Groundwater at Accelerator Sites
000006841 260__ $$aLa Grange Park, Ill.$$bSoc.$$c2009
000006841 300__ $$a924 - 930
000006841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000006841 3367_ $$2DataCite$$aOutput Types/Journal article
000006841 3367_ $$00$$2EndNote$$aJournal Article
000006841 3367_ $$2BibTeX$$aARTICLE
000006841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000006841 3367_ $$2DRIVER$$aarticle
000006841 440_0 $$04652$$aNuclear Technology$$v168$$x0029-5450$$y3
000006841 500__ $$aRecord converted from VDB: 12.11.2012
000006841 520__ $$aAt sites with powerful particle accelerators, the problem of groundwater activation by direct neutron radiation arises. Licensing of particle accelerators requires evidence that groundwater activation is within the legal limits and thus will not endanger workers, the public, or the environment.In this study we focus on the following radionuclides: C-14, Ca-41, Ca-45, Cl-36, Co-55, Co-57, Co-60, H-3, Mn-54, Na-24, P-32, S-35, Si-32, and V-50. The conventional approach for calculating activation of soil and groundwater is described and utilized for a fictive 5-MW proton accelerator at Julich, Germany, with a beam loss of 1 W.m(-1). An updated overview of partition co-efficients for relevant radionuclides in sand, clay, loam, and organic soils is presented. Based on the two aforementioned methods, groundwater activation is estimated with a simplified homogeneous groundwater transport model. The results indicate H-3, C-14, and Cl-36 as the most relevant radionuclides concerning the resultant activity concentrations and estimated dose rates at the site boundary. For this fictive test case, the site boundary is located a distance 250 m downstream of the accelerator, which leads to acceptable risk for the public, given the legal standards.
000006841 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000006841 588__ $$aDataset connected to Web of Science
000006841 650_7 $$2WoSType$$aJ
000006841 65320 $$2Author$$aactivation
000006841 65320 $$2Author$$apartition coefficient
000006841 65320 $$2Author$$areactive transport
000006841 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b1$$uFZJ
000006841 7001_ $$0P:(DE-Juel1)133423$$aHeuel-Fabianek, B.$$b2$$uFZJ
000006841 7001_ $$0P:(DE-Juel1)VDB5379$$aMoormann, R.$$b3$$uFZJ
000006841 7001_ $$0P:(DE-Juel1)VDB1117$$aNabbi, R.$$b4$$uFZJ
000006841 7001_ $$0P:(DE-Juel1)VDB72510$$aSchlögl, B.$$b5$$uFZJ
000006841 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b6$$uFZJ
000006841 773__ $$0PERI:(DE-600)2132500-5$$gVol. 168, p. 924 - 930$$p924 - 930$$q168<924 - 930$$tNuclear technology$$v168$$x0029-5450$$y2009
000006841 909CO $$ooai:juser.fz-juelich.de:6841$$pVDB
000006841 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000006841 9141_ $$y2009
000006841 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000006841 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000006841 9201_ $$0I:(DE-Juel1)VDB814$$d30.09.2010$$gIEF$$kIEF-6$$lSicherheitsforschung und Reaktortechnik$$x2
000006841 9201_ $$0I:(DE-Juel1)VDB224$$gS$$kS$$lAbteilung Sicherheit und Strahlenschutz$$x3
000006841 970__ $$aVDB:(DE-Juel1)115254
000006841 980__ $$aVDB
000006841 980__ $$aConvertedRecord
000006841 980__ $$ajournal
000006841 980__ $$aI:(DE-Juel1)IBG-3-20101118
000006841 980__ $$aI:(DE-Juel1)IEK-6-20101013
000006841 980__ $$aI:(DE-Juel1)VDB224
000006841 980__ $$aUNRESTRICTED
000006841 981__ $$aI:(DE-Juel1)IFN-2-20101013
000006841 981__ $$aI:(DE-Juel1)IBG-3-20101118
000006841 981__ $$aI:(DE-Juel1)IEK-6-20101013
000006841 981__ $$aI:(DE-Juel1)VDB224