001     6841
005     20240708134001.0
024 7 _ |2 WOS
|a WOS:000272163800057
037 _ _ |a PreJuSER-6841
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Nuclear Science & Technology
100 1 _ |a Prolingheuer, N.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB72509
245 _ _ |a Estimating Dose Rates from Activated Groundwater at Accelerator Sites
260 _ _ |a La Grange Park, Ill.
|b Soc.
|c 2009
300 _ _ |a 924 - 930
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nuclear Technology
|x 0029-5450
|0 4652
|y 3
|v 168
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a At sites with powerful particle accelerators, the problem of groundwater activation by direct neutron radiation arises. Licensing of particle accelerators requires evidence that groundwater activation is within the legal limits and thus will not endanger workers, the public, or the environment.In this study we focus on the following radionuclides: C-14, Ca-41, Ca-45, Cl-36, Co-55, Co-57, Co-60, H-3, Mn-54, Na-24, P-32, S-35, Si-32, and V-50. The conventional approach for calculating activation of soil and groundwater is described and utilized for a fictive 5-MW proton accelerator at Julich, Germany, with a beam loss of 1 W.m(-1). An updated overview of partition co-efficients for relevant radionuclides in sand, clay, loam, and organic soils is presented. Based on the two aforementioned methods, groundwater activation is estimated with a simplified homogeneous groundwater transport model. The results indicate H-3, C-14, and Cl-36 as the most relevant radionuclides concerning the resultant activity concentrations and estimated dose rates at the site boundary. For this fictive test case, the site boundary is located a distance 250 m downstream of the accelerator, which leads to acceptable risk for the public, given the legal standards.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a activation
653 2 0 |2 Author
|a partition coefficient
653 2 0 |2 Author
|a reactive transport
700 1 _ |a Herbst, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)129469
700 1 _ |a Heuel-Fabianek, B.
|b 2
|u FZJ
|0 P:(DE-Juel1)133423
700 1 _ |a Moormann, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB5379
700 1 _ |a Nabbi, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB1117
700 1 _ |a Schlögl, B.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB72510
700 1 _ |a Vanderborght, J.
|b 6
|u FZJ
|0 P:(DE-Juel1)129548
773 _ _ |g Vol. 168, p. 924 - 930
|p 924 - 930
|q 168<924 - 930
|0 PERI:(DE-600)2132500-5
|t Nuclear technology
|v 168
|y 2009
|x 0029-5450
909 C O |o oai:juser.fz-juelich.de:6841
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-4
|l Agrosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |k IEF-6
|l Sicherheitsforschung und Reaktortechnik
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB814
|x 2
920 1 _ |k S
|l Abteilung Sicherheit und Strahlenschutz
|g S
|0 I:(DE-Juel1)VDB224
|x 3
970 _ _ |a VDB:(DE-Juel1)115254
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a I:(DE-Juel1)VDB224
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)VDB224


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21