001     6877
005     20230217124329.0
024 7 _ |a 10.1103/PhysRevE.83.046708
|2 DOI
024 7 _ |a WOS:000290116400005
|2 WOS
024 7 _ |a 2128/9320
|2 Handle
037 _ _ |a PreJuSER-6877
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Fluids & Plasmas
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |a Hijar, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB65694
245 _ _ |a Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics
260 _ _ |a College Park, Md.
|b APS
|c 2011
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2011-04-20
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2011-04-01
300 _ _ |a 046708
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review E
|x 1539-3755
|0 4924
|y 4
|v 83
500 _ _ |a H. H. acknowledges financial support from DAAD, Germany (2008), and DGAPA-UNAM, Mexico (2009-2010). G. S. would like to thank G. Gompper and R. Winkler for helpful discussions.
520 _ _ |a In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every simulation step as well as cases in which the thermostat is applied only at regular time intervals. Due to the application of the thermostat temperature fluctuations are forced to relax to equilibrium faster than they do in the nonthermostatted, constant-energy case. Depending on the interval of application of the thermostat, it is demonstrated that the thermodynamic state changes gradually from isothermal to adiabatic conditions. In order to exhibit this effect we compute from simulations diverse correlation functions of the hydrodynamic fluctuating fields. These correlation functions are compared with those predicted by a linearized hydrodynamic theory of a simple fluid in which a thermostat is applied locally. We find a good agreement between the model and the numerical results, which confirms that hydrodynamic fluctuations in Multiparticle Collision Dynamics in the presence of the thermostat have the properties expected for spontaneous fluctuations in fluids in contact with a heat reservoir.
536 _ _ |2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
542 _ _ |i 2011-04-20
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Sutmann, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)132274
773 1 8 |a 10.1103/physreve.83.046708
|b American Physical Society (APS)
|d 2011-04-20
|n 4
|p 046708
|3 journal-article
|2 Crossref
|t Physical Review E
|v 83
|y 2011
|x 1539-3755
773 _ _ |a 10.1103/PhysRevE.83.046708
|g Vol. 83, p. 046708
|p 046708
|n 4
|q 83<046708
|0 PERI:(DE-600)2844562-4
|t Physical review / E
|v 83
|y 2011
|x 1539-3755
856 7 _ |u http://dx.doi.org/10.1103/PhysRevE.83.046708
856 4 _ |u https://juser.fz-juelich.de/record/6877/files/PhysRevE.83.046708.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/6877/files/PhysRevE.83.046708.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/6877/files/PhysRevE.83.046708.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/6877/files/PhysRevE.83.046708.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/6877/files/PhysRevE.83.046708.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:6877
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2011
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)115293
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1063/1.478857
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4822570
|1 D. Frenkel
|2 Crossref
|9 -- missing cx lookup --
|y 2002
999 C 5 |1 D. C. Rapaport
|y 2005
|2 Crossref
|t The Art of Molecular Dynamics Simulation
|o D. C. Rapaport The Art of Molecular Dynamics Simulation 2005
999 C 5 |1 G. Sutmann
|y 2009
|2 Crossref
|t Multiscale Simulations Methods in Molecular Sciences
|o G. Sutmann Multiscale Simulations Methods in Molecular Sciences 2009
999 C 5 |a 10.1016/0009-2614(74)85442-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.430300
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.fl.20.010188.000551
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.56.1505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.fluid.30.1.329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Succi
|y 2001
|2 Crossref
|t The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
|o S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond 2001
999 C 5 |a 10.1063/1.481289
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1815291
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.71.061804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.74.031402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physa.2006.04.011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.68.036701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.63.020201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.67.066706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp046040x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epje/i2002-10056-6
|9 -- missing cx lookup --
|1 N. Kikuchi
|p 63 -
|2 Crossref
|t Eur. Phys. J. E
|v 9
|y 2002
999 C 5 |a 10.1209/epl/i2000-00428-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2003-10310-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2001-00522-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.66.036702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.72.011901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1603721
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/5/15/006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.72.011408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3057567
|1 L. D. Landau
|2 Crossref
|9 -- missing cx lookup --
|y 1959
999 C 5 |a 10.1103/PhysRevE.74.056702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.70.035701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.72.046707
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 R. G. Winkler
|y 2008
|2 Crossref
|t Computational Condensed Matter Physics
|o R. G. Winkler Computational Condensed Matter Physics 2008
999 C 5 |1 G. Gompper
|y 2009
|2 Crossref
|t Advances in Polymer Science
|o G. Gompper Advances in Polymer Science 2009
999 C 5 |a 10.1016/0301-0104(83)85235-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcp.2009.09.024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 D. Forster
|y 1975
|2 Crossref
|t Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions
|o D. Forster Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions 1975
999 C 5 |1 B. J. Berne
|y 2000
|2 Crossref
|t Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
|o B. J. Berne Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics 2000
999 C 5 |1 J. M. Ortiz de Zárate
|y 2006
|2 Crossref
|t Hydrodynamic Fluctuations in Fluids and Fluid Mixtures
|o J. M. Ortiz de Zárate Hydrodynamic Fluctuations in Fluids and Fluid Mixtures 2006
999 C 5 |a 10.1103/PhysRevE.69.051701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physa.2004.09.017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2006-00104-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.76.046705
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-1573(78)90145-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0378-4371(83)90144-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0378-4371(83)90145-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 1951
|2 Crossref
|o 1951
999 C 5 |1 P. K. Keown
|y 1997
|2 Crossref
|t Stochastic Simulation in Physics
|o P. K. Keown Stochastic Simulation in Physics 1997


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21