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In this work we study the behavior of mesoscopic fluctuations of a fluid simulated by Multiparticle Collision

Dynamics when this is applied together with a local thermostatting procedure that constrains the strength of

temperature fluctuations. We consider procedures in which the thermostat interacts with the fluid at every

simulation step as well as cases in which the thermostat is applied only at regular time intervals. Due to the

application of the thermostat temperature fluctuations are forced to relax to equilibrium faster than they do in

the nonthermostatted, constant-energy case. Depending on the interval of application of the thermostat, it is

demonstrated that the thermodynamic state changes gradually from isothermal to adiabatic conditions. In order

to exhibit this effect we compute from simulations diverse correlation functions of the hydrodynamic fluctuating

fields. These correlation functions are compared with those predicted by a linearized hydrodynamic theory of

a simple fluid in which a thermostat is applied locally. We find a good agreement between the model and the

numerical results, which confirms that hydrodynamic fluctuations in Multiparticle Collision Dynamics in the

presence of the thermostat have the properties expected for spontaneous fluctuations in fluids in contact with a

heat reservoir.
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I. INTRODUCTION

The simulation of complex fluids, e.g., dissolved chem-

ically reacting systems, colloidal or polymer suspensions,

multiphase fluids and amphiphilic systems, to mention but

a few, represents a major task in computational physics. The

main difficulties faced when simulations of these systems are

implemented arise from the coexistence of widely separated

length and timescales. Indeed, the interest in these systems

lays usually in the microscopic dynamics of some degrees of

freedom interacting with a solvent whose dynamics over long

distances and long timescales is essential for the phenomena

but whose detailed properties are irrelevant [1]. Simulating

the solvent on an atomistic level by means of, e.g., molecular

dynamics [2–4] on mesoscopic or even macroscopic dimen-

sions is not feasible due to the enormous number of degrees

of freedom as well as long timescales that have to be covered.

Therefore, taking into account hydrodynamic effects in

particle-based simulations is a challenge that has motivated the

development of new approaches to modeling hydrodynamics

that incorporate essential dynamical properties and allow for

coupling with the interesting microscopic degrees of freedom,

yet are simple enough to be simulated for long times and

distances. Among others, these methods include Brownian

Dynamics [5,6], in which the effect of the solvent on solutes

is modeled by the Oseen- or Rotne-Prager tensor and through

random displacements of the suspended particles governed

by correlated multivariant Gaussian probability distribution

functions; Stokesian Dynamics [7], which incorporates many-
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body hydrodynamic interactions between dissolved particles

through an analytical representation of the mobility tensor;

and lattice Boltzmann techniques [8], which can be viewed as

a special finite difference scheme for the kinetic equation of the

discrete-velocity distribution function [9] and are particularly

useful in fluid flow applications involving interfacial dynamics

and complex boundaries [9,10].

More recently, Malevanets and Kapral developed a new

appealing method for simulating the dynamics of simple fluids

at the mesoscopic scale [1,11], which also allows for coupling

with microscopic degrees of freedom. This method is known in

the literature as Stochastic Rotation Dynamics or Multiparticle

Collision Dynamics (MPCD) and simulates a fluid by means of

particles whose positions and velocities are considered as con-

tinuous variables. The microscopic details about these particles

are not specified, but their dynamics is treated in a simplified

form through stochastic collisions, i.e., transformations in

velocity space, which preserve both momentum and energy.

Consequently, MPCD allows for recovering the hydrodynamic

equations of mass and momentum conservation, and of heat

conduction [1].

MPCD has some advantages that make it very attractive for

the simulation of complex fluids. For instance, since MPCD is

a particle-based method it can be easily coupled to suspended

particles, e.g., polymers or colloids, whose detailed evolution

can be followed by using molecular dynamics [11–14]. MPCD

captures the hydrodynamic behavior of the fluid around

the embedded particles, and, thus, it naturally simulates the

hydrodynamic interactions between them [14]. In addition, due

to its stochastic character it also gives rise to hydrodynamic

fluctuations and, consequently, to random Brownian forces

on the suspended particles [14,15]. In this way, MPCD

can be used as a thermal bath that supports hydrodynamic
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interactions. Moreover, the algorithm of MPCD is relatively

simple, which makes it very stable and suitable for simulations

over large timescales. Finally, this simplified dynamics has

made also possible the analytical calculation of the transport

coefficients of the simulated fluid. Expressions for viscosities

and thermal conductivities of MPCD fluids have been obtained

from discrete-time projection operator techniques [16–18] and

from a kinetic theory approach [19]. Both approaches are

complementary, and simulation results have been found to

agree very well with the analytical expressions, which has

given confidence in using MPCD for simulating physical

systems as diverse as suspensions of polymers [20] and

colloids [11,14], polymers under flow [15,21,22], flow around

objects [23,24], and vesicles under flow [25]. Due to the extent

of its present and future applications, characterizing fluids

simulated via MPCD or variations of this method is a matter

of significant importance.

Special boundary conditions and external force fields

are usually implemented in MPCD with diverse purposes.

In Ref. [26], Lees-Edwards boundary conditions [27] have

been incorporated to the MPCD algorithm, in order to

generate a steady shear flow. In Ref. [24], an external

gravitational field and bounce-back boundary conditions in

which velocities are completely reversed have been used

in order to produce a steady Poiseuille flow of a MPCD

fluid. In Ref. [28], the presence of the gravitational field

is taken into account to study the sedimentation of claylike

colloids embedded in a MPCD fluid. In these cases, work is

continuously performed on the MPCD particles as they cross

the boundaries and by the external force fields. Eventually,

this amount of work is dissipated as heat, the temperature

of the fluid increases, and it is absolutely necessary to

apply a thermostatting procedure to remove the excess of

energy and prevent the fluid from heating [14,24,26,28].

Although it is shown in Refs. [24,26] that the application

of a thermostat is not significant in determining the shear

viscosity of a MPCD fluid, it can be intuitively expected

that the coupling with a thermostat will change some other

physical features of this system; in particular, it may affect

the way in which its thermal fluctuations are produced

and propagate, e.g., sound modes should propagate at the

isothermal sound speed instead of propagating at the isen-

tropic sound speed, and temperature fluctuations will not

be able to propagate through the fluid since they will be

eliminated by the thermostat. As far as we know, these

effects have not been addressed in the literature of the

subject.

The main purpose of the present paper is to analyze the

effects of a thermostat on the dynamics of the spontaneous

fluctuations of an equilibrated fluid simulated with MPCD. We

will examine these effects by performing measurements of the

dynamic correlation functions of fluctuations in thermostatted

MPCD fluids and comparing our results with analytical

predictions obtained from the Fluctuating Hydrodynamics

(FH) theory of Landau and Lifshitz [29] extended for liquids

that interact with a local thermostat. It is worth stressing that

this approach follows the recent work of Ref. [30], where

the analysis of the equilibrium fluctuations of hydrodynamic

modes has been used as an alternative method to directly

measure transport coefficients, i.e., shear and bulk viscosities

and thermal diffusivities, in MPCD fluids.

In the following section we will describe the basic imple-

mentation of MPCD and the specific thermostatting procedure

to be used in this work. In order to analyze the effects of the

thermostat, we will consider different strengths for its coupling

with MPCD. This will be done by allowing the thermostat

to interact with the system at different time rates. A strong

interaction will be obtained by applying the thermostat at every

simulation step, while a weaker interaction can be achieved by

applying the thermostat at larger regular intervals of simulation

steps. These different types of interactions between the thermo-

stat and the fluid will be referred to as Strong Thermostatting

Interaction (STI) and Partial Thermostatting Interaction (PTI),

respectively. In Sec. III we will develop the FH formalism

for fluids in which a thermostat is applied locally. This model

will be a first approximation intended to imitate the transport

of energy occurring in thermostatted MPCD. Within our

model, the principal effect of the thermostat will consist of

an additive contribution to the relaxation rate of temperature

fluctuations. We will analyze the typical relaxation times

of the hydrodynamic fluctuations in MPCD and show that

the application of the thermostat might induce an effective

separation of the timescales associated with relaxation of

temperature and relaxation of the remaining hydrodynamic

variables. We will use the formalism developed in Sec. III

in order to calculate diverse dynamic correlation functions

of fluctuating variables for both STI and PTI. In Sec. IV we

will present measurements of these correlations obtained from

direct simulations of thermostatted MPCD. We will introduce

the comparison of the analytical expressions with the results

of simulations and find a very good agreement. Consequently,

in the present work we show that thermostatted MPCD

is a useful and reliable method for simulating fluctuating

hydrodynamics in isothermal conditions. As an indirect result

we will also conclude that the theoretical expressions for the

transport coefficients of MPCD fluids obtained previously in

literature [18,30–32] can be considered valid as well when

these fluids are in contact with a heat reservoir. In Sec. V

we will summarize our main conclusions and state some

limitations of our analysis.

II. THERMOSTATTED MULTIPARTICLE

COLLISION DYNAMICS

The MPCD algorithm simulates the dynamics of N point

particles of mass m, whose positions and velocities are

specified by the vectors �ri and �vi , with i = 1,2, . . . ,N . We

follow the simplest implementation of the MPCD method

in which the simulation box where particles move is a

cube of volume L3. The box is subdivided into smaller

cells of volume a3. The number of particles per cell

may change, but the total number of simulated particles

remains constant. The simulation consists of two main

steps. In the first step, also called the streaming step,

particles are advanced ballistically during the time interval

�t :

�ri (t + �t) = �ri (t) + �t �vi (t) . (1)
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In the second step, also called the collision step, the center

of mass velocity of each cell is calculated:

�uµ (t) = 1

Nµ

∑

i∈µ

�vi (t) , (2)

where the xindex µ has been used to indicate the µth cell.

Then the particles located in the same cell collide and therefore

exchange momentum. This collision process is produced by

updating the velocities according to

�vi(t + �t) = �uµ(t) + R[α; �nµ(t)] · [�vi(t) − �uµ(t)], (3)

where µ indicates the cell where the ith particle is located and

R(α; �nµ(t)) =







n2
µ,x(1 − cos α) + cos α nµ,xnµ,y(1 − cos α) − nµ,z sin α nµ,xnµ,z(1 − cos α) + nµ,y sin α

nµ,xnµ,y(1 − cos α) + nµ,z sin α n2
µ,y(1 − cos α) + cos α nµ,ynµ,z(1 − cos α) − nµ,x sin α

nµ,xnµ,z(1 − cos α) − nµ,y sin α nµ,ynµ,z(1 − cos α) + nµ,x sin α n2
µ,z(1 − cos α) + cos α







(4)

is a stochastic rotation matrix that rotates velocities by a fixed

angle α around the axis �nµ, which is chosen randomly for each

collision cell in every time step. In the three-dimensional case

different forms of producing the stochastic rotation exist [33].

In our simulations, the vector �nµ is produced in each cell at

every time step by randomly selecting a point on the surface

of a sphere with unit radius.

We apply periodic boundary conditions in the three Carte-

sian directions. A homogeneous random displacement of the

MPCD cells by a vector with components between −a/2 and

a/2 is applied before the collision step, which guarantees

Galilean invariance of the method, a fact first noticed by Ihle

and Kroll [17,18].

In a MPCD liquid, hydrodynamic fields can be measured

locally, i.e., on the cell level. In particular, the temperature of

the µth cell at time t is determined by the mean square of the

relative velocities of the particles with respect to the center of

mass velocity of the cell, i.e.,

Tµ (t) = m

3(Nµ − 1)kB

∑

i∈µ

[�vi (t) − �uµ (t)]2, (5)

where Tµ denotes the temperature of the µth cell, and kB is

the Boltzmann constant.

In this expression for the temperature, it has been taken into

account that the center of mass velocity of the cell does not

contribute to the thermal energy on a cell level [30].

Different thermostatting procedures are known in literature

for keeping the temperature of MPCD fluids at a fixed or

fluctuating value around a specific temperature [13,28].

In this work we consider the effect of a local thermostat,

allowing for fluctuations of thermal energy on a cell level,

but fixing the temperature on average to the exact prescribed

value, T0. This thermostat, called a Maxwell-Boltzmann

Scaling Thermostat (MBST), was introduced and compared

with other thermostats in Ref. [36]. It was shown that it

preserves important statistical properties of the fluid, e.g.,

velocity distributions, density, and velocity profiles, to name a

few. Instead of sampling a velocity scaling factor from the

Maxwell-Boltzmann distribution of velocities by a Monte

Carlo scheme [28,34,35], the kinetic energy is directly ob-

tained from its thermal distribution function.

The basic principle of the thermostat is that energy

fluctuations given a small number of degrees of freedom are

considered. The distribution function for the kinetic energy

Eµ on the cell level is given by

P (Eµ|Nµ) = 1

Z

∫

d3N��vδ



E − m

2

Nµ
∑

i=1

��v 2
i,µ





×δ





Nµ
∑

i=1

��vi,µ



 exp







− m

2kBT

Nµ
∑

i=1

��v 2
i,µ







,

(6)

with Nµ being the number of particles in a cell and Z =
∫

d3N��vδ(��vi,µ) exp{− m
2kBT

∑Nµ

i=1 ��v 2
i,µ} the partition func-

tion. The second δ function takes into account that in the

presence of an external field only relative velocities, ��vi,µ =
�vi − �uµ, obey the Maxwell-Boltzmann distribution. After

evaluation of the integrals, the distribution function reduces to

P (Eµ|Nµ) = 1

Eµ

(

Eµ

kBT

)
φ

2 1

Ŵ(φ/2)
e−Eµ/kBT , (7)

where φ = 3(Nµ − 1) is the number of degrees of freedom

within a collision cell and Ŵ represents the Gamma function.

According to the distribution function, Eq. (7), a random value

for the cell energy E′
µ is drawn appropriate for the number

of particles within a cell (which is a fluctuating quantity). A

random number that obeys this distribution is generated by

an acceptance-rejection method (see Appendix A). In a next

step, the velocities of particles within a given cell µ are scaled

according to

�vi (t) → ξµ (t) [�vi (t) − �uµ (t)] + �uµ (t) ,

ξµ =
√

2E′
µ

m
∑Nµ

i=1(�vi − �uµ)2
. (8)

This procedure guarantees conservation of momentum as well

as thermal statistical properties of the fluid.

In order to study further the effects of the thermostat on the

collective properties of the MPCD fluid we perform a second

thermostatting implementation which we have called PTI
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previously. In this case, the velocity transformation, Eq. (8), is

not implemented at every simulation step but at regular time

intervals of size ntherm�t , with ntherm > 1.

It could be expected intuitively that due to the application

of both strong and partial thermostats, the way in which

temperature fluctuations evolve in the MPCD fluid is modified.

Consider, for instance, the STI. Although thermal energy

is exchanged between cells in the streaming step, thermal

perturbations are not able to propagate through the system

since they are destroyed by scaling. Because of the thermostat,

temperature fluctuations effectively decay on a very short

timescale, while density and velocity fluctuations are still

present and evolve toward equilibrium slowly. On the other

hand, considering in PTI a very large interval between

applications of the thermostat, i.e., ntherm → ∞, there will be

effectively no influence on the thermal diffusion. These two

extreme scenarios (ntherm = 1 and ntherm → ∞) correspond

to the isothermal and adiabatic conditions in the fluid, and

therefore it might be expected that e.g., consequences for the

dispersion relation of sound propagation might be observed. In

this work we will show formally and from simulation results

that this is the case. Furthermore, we will show that depending

on the size of the interval ntherm there is a gradual change from

isothermal to adiabatic conditions in the observed spectra of

density fluctuations, which is taken into account by an energy

source function within the formalism of FH. With this purpose

we will first consider from an analytic point of view the behav-

ior of thermal hydrodynamic fluctuations occurring in simple

liquids with different couplings to an energy source function.

III. HYDRODYNAMIC FLUCTUATIONS IN

THEMOSTATTED FLUIDS

A. Fluctuating hydrodynamics

In a recent publication [30], it has been shown that

the hydrodynamic fluctuations in MPCD fluids around

equilibrium states can be very well described by the linearized

hydrodynamics theory that is used to calculate the dynamic

correlation functions of simple liquids in the limit of small

wavevectors and frequencies [37,38]. In this work we will

exploit this result in order to describe analytically the

fluctuations occurring in a thermostatted MPCD fluid also in

terms of a linearized hydrodynamic theory. In particular we

will consider the FH formalism of Landau and Lifshitz [29],

which can be equivalently used to describe spontaneous

fluctuations in liquids. FH has been extended to calculate

dynamic correlation functions of complex fluids in equilibrium

and nonequilibrium stationary states [39–42]. In the present

work, we will actually generalize FH in order to calculate

correlation functions in liquids interacting periodically with

a local thermostat. Although local thermostats are difficult to

conceive in real systems, they can be easily implemented in a

MPCD simulation, as has been described in a previous section.

Our model will be an approximation resembling the exchange

of energy occurring at the local level in thermostatted MPCD

due to the application of the MBST.

As usual, fluctuating variables are defined as the local

instantaneous deviations of the hydrodynamic fields of density

ρ, velocity �u, internal energy per unit mass e, etc., with respect

to their average values, i.e., δρ(�r,t) = ρ(�r,t) − ρ0, δui(�r,t) =
ui(�r,t) − ui,0, δe(�r,t) = e(�r,t) − e0, etc., where the subscript

0 denotes the uniform, equilibrium value of the corresponding

field. In order to construct the evolution equations for the

fluctuating fields, the following remarks should be considered.

First, the general hydrodynamic equations that describe

the time and space evolution of the fluid are mathematical

expressions for the laws of conservation of mass, momentum,

and energy and therefore must be valid for describing the

fluctuating motion as well [29]. In addition, for fluids in

states far from a critical point, as it is the case for MPCD

fluids, fluctuations can be considered small, and the general

conservation equations may be linearized in terms of the

fluctuating fields. Furthermore, it should be taken into account

that in the presence of thermal motion, stochastic heat and

momentum fluxes may appear that are not produced by

temperature or velocity gradients [29]. Thus, the heat flux and

and the stress tensor have fluctuating contributions that will

be denoted by Qi and 	ij , respectively.

Finally, when the fluid is allowed to interact with a local

thermostat, a source term, 
 = 
(�r,t), must be included in

the energy balance equation, which accounts for the energy

per unit time per unit volume introduced or extracted by the

thermostat at position �r and time t . For the specific case of

the application of a local thermostat at regular time intervals

of size τ in MPCD, we will consider, as a first approximation,

that 
 can be written in the form


 ≃ Ea − Eb

τa3
, (9)

where Eb = Eb(�r,t) and Ea = Ea(�r,t) are the energies at

time t , of the cell located at position �r , before and after the

application of the thermostat, respectively. On the one hand, Eb

can be written as Eb = E0 + ρa3δe, where E0 is the average

internal energy per cell. On the other hand, Ea is the energy that

is assigned randomly every time interval of size τ , according

to the probability distribution Eq. (7). This allows us to recast

our approximation, Eq. (9), as follows:


 ≃ δE − ρδe

τ
, (10)

where δE = (Ea − E0)/a3 is the amount of energy per unit

volume added or subtracted from the system by the thermostat

with respect to the mean energy.

Consequently, the linearized equations describing the evo-

lution of the fluctuating fields can be cast into the form

∂tδρ + ρ0∂iδui = 0, (11)

∂tδui + c2
T

ρ0

∂iδρ + αT c2
T ∂iδT − 1

ρ0

νijkl∂j∂kδul

= − 1

ρ0

∂j	ij , (12)

∂tδT − γDT ∂j∂jδT + 1

τ
δT + γ − 1

αT

∂iδui

= − 1

ρ0cV

∂iQi + 1

τρ0cV

δE . (13)

In these expressions ∂t and ∂i represent partial derivatives

with respect to time and Cartesian coordinates, respectively,

δT represents temperature fluctuations, c2
T is the isothermal
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sound speed, αT is the thermal expansion coefficient, cV is

the specific heat at constant volume, γ = cp/cV is the ratio of

specific heats at constant pressure and volume, DT = κ/ρ0cp

is the thermal diffusivity coefficient, and νijkl is the viscous

tensor:

νijkl = η
(

δikδj l + δilδjk − 2
3
δijδkl

)

+ ζ δijδkl, (14)

where η and ζ are the shear and bulk viscosity coefficients,

respectively. Notice that summation over repeated indices will

be implicit throughout this paper.

Strictly speaking, the previous expression for the viscous

tensor is valid for a Navier-Stokes fluid and not for a MPCD

fluid for which angular momentum is not conserved [30,43].

As a consequence, the viscous tensor should have an anti-

symmetric contribution that modifies the sound attenuation

coefficient. Later we will consider this effect explicitly, when

we calculate the dynamic correlations of the fluctuations in

MPCD fluids.

In order to obtain the closed form of Eqs. (11)–(13) in

the representation {δρ,δ�u,δT }, we have used the following

thermodynamic relations, which are valid for small deviations

with respect to equilibrium:

δp = c2
T δρ + αT ρ0c

2
T δT , (15)

δe =
(

p0

ρ2
0

− cp − cV

ρ0αT

)

δρ + cV δT , (16)

and exploited the fact that MPCD fluids satisfy an ideal

equation of state [30], which cancels the first term on the

right-hand side of Eq. (16).

As a first approximation, we will study fluctuations occur-

ring in an infinite system. In order to calculate the spectra

of different hydrodynamic fluctuations, it will be convenient

to introduce space and time-space Fourier transforms. The

space Fourier transform of a field f (�r,t) will be denoted

by f̂ = f̂ (�k,t), and the space-time Fourier transform of f

will be denoted by f̃ = f̃ (�k,ω). By Fourier transforming the

fluctuating expressions Eqs. (11)–(13) we obtain the following

equivalent relation:

M





δρ̃

δũ‖
δT̃



 =







−iω ρ0k 0

− c2
T k

ρ0
−iω + Dlk

2 −αT c2
T k

0
γ−1

αT
k −iω + γDT k2 + 1

τ











δρ̃

δũ‖
δT̃



 = − 1

ρ0





0
kikj

k
	̃ij

iki

cV
Q̃i − 1

cV τ
δẼ



 , (17)

which defines the hydrodynamic matrix M = M(�k,ω), and

(

−iω + ν k2
)

δũ⊥ = 1

ρ0 k⊥

(

kykj 	̃xj − kxkj 	̃yj

)

. (18)

Here we have introduced the so called longitudinal

kinematic viscosity, Dl = (4η + 3ζ )/3ρ0, and the kinematic

viscosity coefficient, ν = η/ρ0. We have also introduced

a representation in terms of longitudinal, δũ‖ = ikjδũj/k,

and perpendicular, δũ⊥ = (kyδũx − kxδũy)/k⊥, fluctuating

velocities, where k⊥ = (k2
x + k2

y)1/2. We notice that since the

fluid is isotropic, a second independent transverse velocity

component exists that obeys an equation equivalent to Eq. (18).

The previous stochastic linearized equations reduce to the

usual FH description in the limit of no application of the

thermostat, i.e., for τ → ∞. A remarkable effect induced

by the thermostat consists in modifying the relaxation rate

of temperature fluctuations from its adiabatic value, γDT k2,

to the effective value, γDT k2 + τ−1. We will exploit this

property subsequently, when we calculate the hydrodynamic

modes of the thermostatted fluid.

In order to complete our model, the statistical properties of

the noise terms 	ij , Qi , and δE must be specified. As usual,

	ij and Qi will be assumed to describe independent Gaussian

Markovian processes with zero average [29,37,44]. Since it

has been noted that the thermostat modifies the rate at which

temperature fluctuations dissipate by introducing the additive

term τ−1, we will propose that Qi satisfies the following

Fluctuation-Dissipation Relation (FDR) in Fourier space,

kik
′
j 〈Q̃∗

i (�k,ω)Q̃j (�k ′,ω′)〉

= 2(2π )4kBT 2
0 ρ0cV

(

γDT kik
′
i + 1

τ

)

δ
(

ω − ω′)δ
(�k − �k ′),

(19)

which reduces to the usual FDR for Qi in the limit of no

application of the thermostat [37,44]. In the case of the

stochastic stress tensor 	ij , we will assume the well-known

form of the FDR [29,37,44],

〈

	̃∗
ij (�k ′,ω′)	̃kl(�k,ω)

〉

= 2(2π )4kBT0νijklδ(ω − ω′)δ(�k − �k ′). (20)

Finally, the statistical properties of δE must be determined

from the character of the applied thermostat, i.e., from the

probability distribution Eq. (7). The application of the MBST

as it was described in the previous section implies that δE also

describes a Markovian process with vanishing first moment.

In addition, δE is independent of both Qi and 	ij . As a first

approximation, we will complete the statistical description of

δE by assuming that it follows a Gaussian process, whose
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second moment will be written in the form

〈δẼ∗(�k ′,ω′)δẼ(�k,ω)〉 = (2π )4σ 2
thermδ(ω − ω′)δ(�k − �k ′),

(21)

where σtherm is a measure of the strength of the energy flow

induced by the thermostat at the local level. The explicit form

of σtherm is calculated in Appendix B.

The formalism presented above will be used in subsequent

sections in order to model the behavior of spontaneous

fluctuations in a thermostatted MPCD fluid. We will use

it to calculate diverse dynamic correlation functions of the

hydrodynamic fields, which are to be compared later with

those observed in actual simulations.

B. Strongly thermostatted case

We will study first the effects of a STI, in which temperature

fluctuations are forced to vanish as soon as they are produced.

We will show that the application of the thermostat modifies

the timescale over which temperature fluctuations evolve. This

can be expected since in this case we may think of temperature

fluctuations as if they decay very fast to equilibrium, say, on

a timescale of order τf , while the remaining hydrodynamic

fluctuations vanish on a slower timescale, with a relaxation

time τs ≫ τf .

In order to illustrate that this argument is valid in MPCD

simulations, let us consider a typical implementation of

this method with the following input parameters: number

of particles per cell M = 10, mass of each particle m = 1,

collision angle α = 130◦, time step �t = 0.1, temperature

T = 1, cell size a = 1, and 203 = L3 collision cells. Notice

that throughout this paper simulation units rather than physical

units will be considered. Explicit expressions for the transport

coefficients of MPCD fluids in terms of the previous parame-

ters exist in diverse references [18,30–32], from which it can

be anticipated that the shear viscosity of the simulated fluid

(kinetic plus collisional contributions) will be ν ≃ 8.7 × 10−1.

Then velocity fluctuations with wavenumber k = 2π/L will

decay with a characteristic time τvel = 1/(νk2) ≃ 1.1 × 101.

In the absence of a thermostat, it can be also anticipated

that the thermal diffusivity of the MPCD fluid will be

DT ≃ 1.5 × 10−1, and accordingly, the relaxation time for

temperature fluctuations will be τtemp = 1/(DT k2) ≃ 6.5 ×
101. Both τvel and τtemp are comparable. However, in the case

of a STI, velocity fluctuations will still evolve slowly toward

equilibrium while temperature fluctuations will be forced to

decay much faster, in fact, in a time interval of size �t ≪ τvel.

Then the thermostat introduces a separation on the

timescales for the relaxation of temperature with respect

to the remaining hydrodynamic fields. This might be more

clearly illustrated by writing Eq. (17) in terms of the effective

relaxation rate for temperature fluctuations, τ−1
eff = γDT k2 +

τ−1, and the variables with equal dimensions δρ̄ = ρ−1
0 δρ̂,

δū‖ = c−1
T δû‖, and δT̄ = αT δT̂ ,

∂t





δρ̄

δū‖
δT̄



 = −





0 cT k 0

−cT k Dlk
2 −cT k

0 (γ − 1) cT k τ−1
eff









δρ̄

δū‖
δT̄



 ,

(22)

where the elements of the matrix on the right-hand side

have units of frequency and represent the inverse of the

characteristic times involved in the evolution of the fluctuating

fields. For simplicity, we have omitted in Eq. (22) the

contribution of the stochastic forces.

Since τ−1
eff is expected to be large, we can consider the

limit τ−1
eff ≫ cT k,Dlk

2. It then follows that if a unit time of

the order of τeff, is used, the elements of the hydrodynamic

matrix coupling δρ̄ and δū‖, with δT̄ , will be of the order

of a small quantity ε = cT kτeff. This implies that for short

timescales the evolution of δρ̄ and δū‖ does not affect the

motion of δT̄ . On the other hand, on a large timescale of the

order of 1/cT k, we expect that temperature fluctuations will

have already decayed, and they will not perturb the motion of

the slow variables [45,46].

Indeed, the existence of well-defined timescales can be

exploited to decouple the dynamics of slow and fast variables.

For linear systems like the one described by Eq. (22), a system-

atic decoupling procedure of slow and fast variables has been

developed by Geigenmüller, Titulaer, and Felderhof [45,46].

The application of this procedure to our case is presented in

Appendix C. It yields the following reduced expression for the

time evolution the slow variables δρ̄ and δū‖:

∂t

(

δρ̄

δū‖

)

= −(1 + O(ε2))

(

0 cT k

−cT k Dlk
2

)(

δρ̄

δū‖

)

.

(23)

In a first approximation, we will neglect contributions of

order ε2 or higher. In this case, the linearized expression for

density and longitudinal velocity fluctuations can be written

in terms of a reduced hydrodynamic matrix Mred as

(

−iω ρ0k

− c2
T k

ρ0
−iω + Dlk

2

)

(

δρ̃

δũ‖

)

= Mred

(

δρ̃

δũ‖

)

= − 1

ρ0k

(

0

kikj 	̃ij

)

, (24)

where we have reintroduced space-time Fourier transforms

and the contributions of the stochastic currents.

The formal solutions of Eqs. (18) and (24) read

δρ̃(�k,ω) = − 1

det Mred(�k,ω)
kikj 	̃ij (�k,ω), (25)

δũ‖(�k,ω) = − iω

ρ0k det Mred(�k,ω)
kikj 	̃ij (�k,ω), (26)

δũ⊥(�k,ω) = − 1

ρ0k⊥(−iω + νk2)
[kykj 	̃xj (�k,ω)

− kxkj 	̃yj (�k,ω)]. (27)

Equation (27) shows that transverse velocity fluctuations

are not affected by the application of the thermostat. In

Eqs. (25) and (26), det Mred is a function of �k and ω, which

can be written in the form

det Mred(�k,ω) = [−iω − s2,red(�k)][−iω − s3,red(�k)],

(28)
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where s2,red(�k) and s3,red(�k) are the longitudinal hydrodynamic

modes of the strongly thermostatted system. They have the

explicit form

s2,red(�k) = icT k

[

1 −
(

Dlk

2cT

)2]1/2

− 1

2
Dlk

2, (29)

s3,red(�k) = −icT k

[

1 −
(

Dlk

2cT

)2]1/2

− 1

2
Dlk

2. (30)

Equations (25)–(30) together with the FDR, Eq. (20), can

be used to calculate the dynamic correlation functions of δρ̃,

δũ‖, and δũ⊥. In this work we will be interested in calculating

only correlations of longitudinal variables since δũ⊥ is not

affected by the thermostat. Let us consider first the density

autocorrelation function or dynamic structure factor,

Sρρ(�k,ω) = 〈δρ̂∗(�k,0)δρ̃(�k,ω)〉, (31)

which is the most relevant quantity in light scattering experi-

ments in liquids and liquid mixtures [38,39]. From Eqs. (20)

and (25) we obtain

Sρρ(�k,ω) = 2 (2π )3 δ�k (0) kBT0

ρ0Dlk
2

4c2
T

[

1 + ω−1
s,red(ω + ωs,red)

(ω + ωs,red)2 + Ŵ2
red

+
1 − ω−1

s,red(ω − ωs,red)

(ω − ωs,red)2 + Ŵ2
red

]

, (32)

where we have introduced the following notation:

ωs,red = ωs,red(k) = Im s2,red(k) = cT k

[

1 −
(

Dlk

2cT

)2 ]1/2

,

(33)

Ŵred = Ŵred(k) = −Re s2,red(k) = 1

2
Dlk

2. (34)

Moreover, δ�k(0) in Eq. (32) is a formal representation of the

Dirac delta function in �k-space evaluated at �k = 0. Notice that

for large systems δ�k(0) ≃ (2π )−3V , where V is the scattering

volume.

Thus, the dynamic structure factor of a thermostatted

fluid consists of two peaks located at ±ωs,red (Brillouin

peaks). The usual central peak (thermal or Rayleigh peak)

has been suppressed as a consequence of the application of the

thermostat. In addition, notice that in the hydrodynamic limit

cT k ≫ Dlk
2, we have ωs,red ≃ cT k, and these peaks reduce

to two Lorentzians, which result from modes propagating at

the isothermal sound speed. In Eq. (32) this limit has not been

taken into account and the Lorentzians are slightly asymmetric

with respect to ±ωs,red, but the dynamic structure factor is still

symmetric as a whole.

In the following, it will be convenient to normalize the

longitudinal correlation functions with respect to the area

under Sρρ in ω space:

Iρρ(�k) =
∫

dω Sρρ(�k,ω). (35)

The normalized density autocorrelation, S̄ρρ = Sρρ/Iρρ , reads

S̄ρρ=
Dlk

2

4π

{

1

(ω + ωs,red)2 + Ŵ2
red

+ 1

(ω − ωs,red)2 + Ŵ2
red

+ 1

ωs,red

[

ω + ωs,red

(ω + ωs,red)2 + Ŵ2
red

− ω − ωs,red

(ω − ωs,red)2 + Ŵ2
s,red

]}

.

(36)

A completely analogous calculation leads to the normalized

longitudinal velocity autocorrelation function,

S̄u‖u‖(
�k,ω) =

〈δû∗
‖(�k,0)δũ‖(�k,ω)〉

Iρρ(�k)
= ω2

ρ2
0k

2
S̄ρρ(�k,ω), (37)

and to the density-velocity cross-correlation function,

S̄ρu‖ (
�k,ω) = 〈δρ̂∗(�k,0)δũ‖(�k,ω)〉

Iρρ(�k)
= i

ω

ρ0k
S̄ρρ(�k,ω), (38)

with 〈δû∗
‖(�k,0)δρ̃(�k,ω)〉 = −〈δρ̂∗(�k,0)δũ‖(�k,ω)〉.

Although S̄u‖u‖ and S̄ρu‖ cannot be directly explored in

experiments, they can be easily measured in MPCD simula-

tions. Measurements of these functions will be presented in

subsequent sections.

C. Partially thermostatted case

We shall consider now spontaneous fluctuations in a fluid

where a thermostat is applied at regular time intervals. The

analysis of the previous section suggested that in strongly

thermostatted systems the effective relaxation rate of the

temperature fluctuations in the fluid can take significant small

values in such a way that the timescale for the relaxation of

temperature fluctuations is very short when compared with the

remaining characteristic times in the system. Let us consider

in detail the opposite case, i.e., when no thermostat is applied

at all. In MPCD DT , Dl , and cT obey the usual relation of the

hydrodynamic limit DT k2,Dlk
2 ≪ cT k. This can be illustrated

for a typical MPCD simulation performed with the same pa-

rameters discussed in the previous section for which DT k2 ∼
1.5 × 10−2 and Dlk

2 ∼ νk2 ∼ 9 × 10−2. Since a MPCD fluid

has an ideal equation of state [30], cT = √
kBT/m, then

cT k ∼ 3.1 × 10−1, from which the hydrodynamic limit is

shown to be a good approximation. Thus, it can be intuitively

expected that the application of the thermostat in regular time

intervals of size τ = ntherm�t will modify the temperature

relaxation rate from its nonthermostatted value DT k2 ≪ cT k,

for ntherm → ∞, to a maximum value DT k2 + τ−1 ≫ cT k,

for ntherm = 1. The latter case was analyzed in detail in the

previous section. Accordingly, in order to describe thermal
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fluctuations in partially thermostatted systems it is necessary

to extend the linearized theory to consider thermal fluctuations

whose relaxation times are not restricted by the hydrodynamic

limit but may take arbitrary values. Here we shall consider this

extension.

We notice first that the general solution for δρ̃ in terms of

the stochastic heat and momentum currents is [Eq. (17)]

δρ̃ = 1

det M

[

−
(

−iω + γDT k2 + τ−1
)

kikj 	̃ij

+ αT c2
T k2

cV

(ikiQ̃i − τ−1δẼ)

]

. (39)

Using the FDR in Fourier space, Eqs. (19)–(21), the density

autocorrelation function is found to be

Sρρ(�k,ω) = 2(2π )4kBT0δ�k(0)

| det M(�k,ω)|2
ρ0k

4Dl

[

ω2 + (γDT k2 + τ−1)2

+ (γ − 1)c2
T

Dl

(γDT k2 + τ−1)

+ (γ − 1)c2
T

2Dlρ0cV

σ 2
therm

kBT 2
0 τ 2

]

. (40)

In these expressions the quantity det M(�k,ω) can be written

in the form

det M(�k,ω) = [−iω − s1(�k)][−iω − s2(�k)][−iω − s3(�k)],

(41)

where the functions of the wavevector s1, s2, and s3, represent

the hydrodynamic modes of the partially thermostatted fluid.

For simplicity, we will find their explicit expressions by

following a resembling procedure to the one used in linearized

hydrodynamics. That is, we will restrict ourselves to the case

in which sound propagation is a much faster process than

momentum and heat diffusion, i.e., cT k ≫ Dlk
2,DT k2. Then

we propose that s1, s2, and s3, can be written as an expansion

si = s
(0)
i + s

(1)
i + · · · , for i = 1, 2, 3, where s

(n)
i is a term of

order n in the small frequencies Dlk
2 and DT k2. In Appendix D

we present in detail the calculation of the hydrodynamic modes

of the thermostatted fluid. The contributions of order zero in

Dlk
2 and DT k2 read

s
(0)
1 = B − 1

3
τ−1, (42)

s
(0)
2 = − 1

2
(B −

√
3iA) − 1

3
τ−1, (43)

s
(0)
3 = − 1

2
(B +

√
3iA) − 1

3
τ−1, (44)

where the quantities A and B are functions of k, cT and DT

given by Eqs. (D3)–(D6).

The contributions of first order in Dlk
2 and DT k2 can be

written in the form

s
(1)
i = −k2

γDT

(

s
(0)2
i + c2

T k2
)

+ Dl

(

s
(0)2
i + s

(0)
i τ−1

)

3s
(0)2
i + 2s

(0)
i τ−1 + γ c2

T k2
,

(45)

for i = 1, 2, 3. It can be shown that if τ → ∞, the usual

hydrodynamic modes can be recovered from Eqs. (42)–(45);

i.e., for cT kτ ≫ 1, we have s1 ≃ −DT k2 and s2,3 ≃ ∓icsk −
Ŵk2, where cs = γ 1/2cT is the isentropic sound speed and

Ŵ = [Dl + (γ − 1)DT ]/2 is the sound attenuation coefficient.

Then, Eqs. (42)–(45) contain the hydrodynamic limit as

special case and can be used also when τ−1 takes large values,

which is the case of a strongly thermostatted system.

We also notice that for the values of the material parameters

of an MPCD fluid, s1, Eqs. (42) and (45), has no imaginary

part. This can be anticipated from the symmetry of the problem

in which two propagating and one diffusive isotropic modes

are expected. This allow us to write det M(�k,ω) in the form

det M(�k,ω)

= (−iω − ωT )[−i(ω − ωs) − ωŴ][−i(ω + ωs) − ωŴ],

(46)

where ωT = ωT (�k) = Re(s1), ωs = ωs(�k) = Im(s3) =
−Im(s2), and ωŴ = ωŴ(�k) = Re(s2) = Re(s3).

The final expression for the density-density correlation

function can be found by substituting Eq. (46) into Eq. (40)

and performing a partial fraction decomposition of the result.

This procedure yields

Sρρ(�k,ω) = 2(2π )3δ�k(0)kBT0ρ0Dlk
4

{

ᾱ

ω2 + ω2
T

+ β̄

[

1

(ω + ωs)
2 + ω2

Ŵ

+ 1

(ω − ωs)
2 + ω2

Ŵ

]

+ γ̄

[

ω + ωs

(ω + ωs)
2 + ω2

Ŵ

− ω − ωs

(ω − ωs)
2 + ω2

Ŵ

]}

,

(47)

where the following notation has been introduced:

β̄ = 1

2K

[

ω2
T + ω2

s + ω2
Ŵ − λ̄

ω2
s + ω2

Ŵ

(

−ω2
s + 3ω2

Ŵ − ω2
T

)

]

,

(48)

γ̄ = 1

2Kωs

[

−ω2
T + ω2

s + ω2
Ŵ

+ λ̄

ω2
s + ω2

Ŵ

(

3ω2
s − ω2

Ŵ + ω2
T

)

]

, (49)

ᾱ = −2β̄ + 2ωs γ̄ , (50)

and

K =
(

3ω2
s − ω2

Ŵ + ω2
T

)(

ω2
T + ω2

s + ω2
Ŵ

)

−
(

−ω2
s + 3ω2

Ŵ − ω2
T

)(

ω2
T − ω2

s − ω2
Ŵ

)

, (51)

λ̄ = γ 2D2
T k4 + γ (γ − 1)c2

T k2 DT

Dl

+ (γ − 1)c2
T

2Dlρ0cV

σ 2
therm

kBT 2
0 τ 2

.

(52)

Equations (42)–(52) define the dynamic structure factor of

a partially thermostatted system. Details apart, Eq. (47) has the

same structure as the dynamic structure factor of a liquid in

thermal equilibrium [38]. It consists of three peaks located at

ω = 0 and ω = ±ωs . The factor proportional to γ̄ in Eq. (47)

describes an asymmetry of the lateral peaks with respect to

their maxima; however, the spectrum of density fluctuations is

symmetric as a whole.

The location of the Brillouin peaks, their maxima, and

the maximum of the Rayleigh peak change as a function

of τ , through the dependence of ωT , ωs , and ωŴ on this

quantity. Two important limiting cases can be obtained from
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Eqs. (42)–(52). We notice first that in the adiabatic case, in

which holds the limit τcT k ≫ 1, we have ωl ≃ −DT k2, ωs ≃
csk, ωŴ ≃ −Ŵk2, and consequently ᾱ ≃ (γ − 1)DT /c2

s k
2Dl ,

β̄ ≃ Ŵ/2c2
s Dlk

2, and γ̄ ≃ (Dl + 3(γ − 1)DT )/4c3
s k

3. Using

these results, the well-known expression for the dynamic

structure factor [38] is recovered:

Sρρ(�k,ω) = 2(2π )3kBT0ρ0δ�k(0)

c2
s

{

(γ − 1)DT k2

ω2 + D2
T k4

+ 1

2
Ŵk2

[

1

(ω + csk)2 + Ŵ2k4
+ 1

(ω − csk)2 + Ŵ2k4

]

+3Ŵ − Dl

2
k2

[

ω + csk

(ω + csk)2 + Ŵ2k4
− ω − csk

(ω − csk)2 + Ŵ2k4

]}

.

On the other hand, for a strongly thermostatted system for

which it is expected that τcT k ≪ 1, we obtain (up the smallest

order in the quantity cT k/DT k2), ωT ≃ −γDT k2, ωŴ ≃
−Dlk

2/2 = −Ŵred, ωs ≃ −cT k ≃ −ω(red), and β̄ ≃ 1/4c2
T k2,

γ̄ ≃ 1/4c3
T k3, ᾱ ≃ 0. Using these results we recover the

expression for the dynamic structure factor in the STI,

Eqs. (32)–(34), with the only difference being the absence of

terms order Dlk
2/cT k. This difference can be expected because

the thermostatted modes s1, s2, and s3, were calculated under

the assumption Dlk
2/cT k ≪ 1.

In general, when the time interval for the application

of the thermostat τ changes from τ = �t to τ → ∞, the

central peak of Sρρ shrinks, while the lateral peaks change

their location from ω ≃ csk to ω ≃ cT k, and consequently

they get closer. These effects will be explicitly shown in

subsequent sections. Finally, in order to compare our results

with numerical simulations, it will be convenient to introduce

the normalized dynamic structure factor S̄ρρ = Sρρ/Iρρ :

S̄ρρ = 1

π (ᾱ |ωT |−1 + 2β̄ |ωŴ|−1)

{

ᾱ

ω2 + ω2
T

+ β̄

[

1

(ω + ωs)
2 + ω2

Ŵ

+ 1

(ω − ωs)
2 + ω2

Ŵ

]

+ γ̄

[

ω + ωs

(ω + ωs)
2 + ω2

Ŵ

− ω − ωs

(ω − ωs)
2 + ω2

Ŵ

]}

. (53)

For simplicity, we will restrict the analysis of dynamic

correlations in PTI to the calculation of Sρρ . The remaining

correlation functions can be studied analogously.

IV. MEASUREMENTS

A. Strongly thermostatted case

We performed simulations in order to calculate numerically

the correlation functions of spontaneous fluctuations in a

MPCD fluid. As basic units we fix the mass of the particles

at m = 1, the size of the collisions cells at a = 1, and the

time step at �t = 0.1. We choose the rotation angle, α, the

number density (average number of particles per cell) M , and

the mean-free path, λ = a�t(kBT0/m)1/2, as the independent

parameters characterizing each simulation. Simulations were

performed for a fluid enclosed in a three-dimensional box with

a total of L3 = 203 collision cells for a fixed mean-free path

λ = 1. At a first stage, we choose a collision angle α = 160◦

and three different densities, M = 5, 10, 20. The thermostating

procedure described in Sec. II A, was performed with T0 = 1.

Two remarks concerning this selection for the values of the

MPCD parameters are worth stressing. First, notice that for the

selected densities, fluids with significant different viscosities

will be simulated. In fact, if these fluids were simulated under

flow conditions, the Reynold’s numbers of those with M = 10

and 20 would be approximately 2 and 5 times larger than that

of the fluid with M = 5, respectively. Second, the parameters

have been selected in such a way that the simulated MPCD

fluid will be in the so-called liquid regime, where collisional

effects dominate over kinetic transport [28], as can be observed

by inspection of Eqs. (54), (55), (57), and (58) below.

During simulations, after allowing for relaxation of the

system, hydrodynamic fluctuating fields are measured at the

cell level and at each time step. In this work, Fourier transforms

of these fields are approximated by the corresponding discrete

Fourier transforms. Time series containing 106 successive

space Fourier transforms of density and velocities are stored

in order to calculate dynamic correlation functions. The main

purpose of this section is to compare these correlations with

those given theoretically by Eqs. (36)–(38). In order to perform

this comparison quantitatively S̄ρρ , S̄ρu‖ , and S̄u‖u‖ must be

evaluated, which in turn requires knowledge of the value of

diverse material parameters and transport coefficients of the

simulated fluid, e.g., cV , γ , cT , Dl , and ν. These properties have

been calculated for a fluid of Malevanets and Kapral in terms

of �t , α, a, and M , by using different approaches [18,30–32].

It is well established that MPCD fluids have an ideal equation

of state, i.e., cV = 3kB/2, γ = 5/3, cT = √
kBT/m, and a

kinematic viscosity coefficient that can be split into a kinetic

and a collisional contributions ν = νkin + νcol, with [30]

νkin

= kBT0 �t

2m

{

5M

(M − 1 + e−M )[2 − cos(α) − cos(2α)]
−1

}

(54)

and

νcol = a2

18M�t
(M − 1 + e−M )[1 − cos(α)]. (55)

It is worth mentioning also that since angular momentum is

not preserved by the present MPCD algorithm [47], the bulk

viscosity is zero, and the longitudinal kinematic viscosity has

the following expression in terms of νkin and νcol:

Dl = 4
3
νkin + νcol. (56)
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We will use the previous expressions to evaluate the

normalized dynamic correlations given by Eqs. (36)–(38) and

perform the comparison against simulations. Figure 1 shows a

comparison of the theoretical density autocorrelation function

S̄ρρ , Eq. (36), with the results of the simulation. The spectra

presented in Fig. 1 correspond to wavevectors with magnitude

k = 2π/L. Different orientations for the wavevector were

probed to verify that the isotropy of the system was preserved

in our simulations. It can be observed that this correlation

function exhibits the properties expected from Eq. (36). A

very good agreement is found for the three considered densities

M = 5, 10, 20.

Figures 2 and 3 present a comparison of the remaining

normalized longitudinal correlation functions S̄u‖u‖ , Eq. (37),

and Im{S̄ρu‖}, Eq. (38), for simulations of a system with

numerical density M = 10 and collision angle α = 160◦. A

very good agreement is also observed in these cases between

simulations and expressions obtained from thermostatted FH.

B. Partially thermostatted case

In order to test the PTI situation, we also performed

simulations for a system in which the thermostat is applied

only every ntherm = τ/�t time steps. The system parameters

used for this set of simulations are M = 10, α = 130◦, and

�t = 0.1. We notice that in the PTI the value of the thermal

diffusivity DT is required in order to compare the model

yielding Eq. (53) with simulation results. In the absence

of a thermostat the thermal diffusivity of the MPCD fluid

is DT = Dkin
T + Dcol

T , where the kinetic and a collisional

contributions are given in terms of T0, �t , α, M , a, and m,

by [30]

Dkin
T = kBT0�t

2m

{

3

1 − cos α
− 1 + 6

M

[

4

5
− 1

4
csc2 (α/2)

]}

,

(57)

Dcol
T = a2

15M�t

(

1 − 1

M

)

[1 − cos(α)], (58)

respectively.

The results of the previous section show that the application

of the thermostat does not modify the longitudinal kinematic

viscosity coefficient appreciably, even in the STI. This can

be readily seen in Fig. 1, where the height and half width

of the peaks can be very well fitted by using Eqs. (54)–(56),

which have been obtained for constant energy simulations.

Therefore, momentum transport between cells is only slightly

modified by thermostatted dynamics. In order to simplify our

following analysis, we shall assume that the same is true for

energy transport. Consequently, we propose that the transport

coefficients in thermostatted MPCD have the same values

as they have in the adiabatic version of the method. This

assumption is also justified by the good agreement found

subsequently between our analysis and numerical results.

With the purpose of calculating the normalized dynamic

structure factor of a partially thermostatted system, S̄ρρ in

Eq. (53), we replace DT = Dkin
T + Dcol

T , given by Eqs. (57)–

(58) and Dl , given by Eqs. (54)–(56), into the expressions for

hydrodynamic modes, Eqs. (42)–(45). These results together

with Eq. (B7) for σ 2
therm are used to calculate the quantities
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FIG. 1. (Color online) Dynamic structure factor of a MPCD fluid

with three different numerical densities M = 5,10,20. Continuous

lines correspond to the density autocorrelation function obtained

from thermostatted FH, Eq. (36). Symbols correspond to numerical

simulations for wavevectors �k = 2π

L
(1,0,0) (circles), �k = 2π

L
(0,1,0)

(squares), and �k = 2π

L
(0,0,1) (triangles).

defining the width and maxima of the thermal and sound

peaks, Eqs. (48)–(52). S̄ρρ is calculated both analytically and

numerically for different values of ntherm = 1, 10, 100, and

1000, and for no thermostat at all.

The comparison between simulations and theory is shown

in Fig. 4. We observe that our model reproduces very well
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FIG. 2. (Color online) Longitudinal velocity autocorrelation

function of a thermostatted MPCD fluid. Continuous line corresponds

to the prediction of thermostatted FH, Eq. (37). Symbols correspond

to numerical simulations of a fluid with numerical density M = 10,

collision angle α = 160◦, for wavevectors �k = 2π

L
(1,0,0) (circles),

�k = 2π

L
(0,1,0) (squares), and �k = 2π

L
(0,0,1) (triangles).

the general behavior of the observed spectra. Figure 4 shows

that when ntherm changes from ntherm = 1 to ntherm → ∞, the

lateral peaks shrink initially and eventually increase by a small

amount in order to reach their final height. They also change

their position from ω = ±cT k to ω = ±csk. On the other hand,

the central peak is negligible initially and increases gradually

up to its maximum value. All these features are reproduced

satisfactorily by our approach. We also notice that there is a

very good quantitative agreement between our model and the

simulations in the cases of strong and weak thermostatting

interactions.

It should be noticed that the hydrodynamic approximation

cT k ≫ Dlk
2 is not longer valid in MPCD if perturbations

propagating with wavenumbers relatively larger than k =

-1 -0.5 0 0.5 1
ω

-0.3

-0.2
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ρ

FIG. 3. (Color online) Density-velocity correlation function of a

MPCD fluid. Continuous line corresponds to the prediction obtained

from thermostatted FH, Eq. (38). Symbols correspond to numerical

simulations of a fluid with numerical density M = 10, collision angle

α = 160◦, for wavevectors �k = 2π

L
(1,0,0) (circles), �k = 2π

L
(0,1,0)

(squares), and �k = 2π

L
(0,0,1) (triangles).
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FIG. 4. (Color online) Normalized dynamic structure factor of

a partially thermostatted MPCD fluid. Continuous lines represent

the analytical estimation Eq. (53), with thermal diffusivities and

longitudinal viscosities given by Eqs. (54)–(56) and (57)–(58),

respectively. Symbols represent simulation results for numerical

density M = 10, collision angle α = 130◦, time step �t = 0.1, and

different time intervals for the application of the thermostat ntherm�t ,

with ntherm = 1 (STI), 10, 100, and 1000, and no application of the

thermostat. Spectra were calculated for wavevector �k = 2π

L
(1,0,0).

2π/L, are considered. In this case, Eqs. (42)–(45) can be used

to calculate the hydrodynamic modes of the thermostatted

fluid only approximatively, and Eq. (53) shows deviations

with respect to the dynamic structure factor observed in

simulations, even for the isothermal and adiabatic situations.

However, our model for thermostatting interactions, expressed

by Eqs. (9) and (21), is still a good approximation to

describe the propagation of these mesoscopic modes. This

is shown in Fig. 5, where the normalized dynamic structure

factor for different thermostating rates and wavenumbers

kL/2π = 3, 5, 7 are presented. In this figure, the fitting of

the numerical results have been performed by using Eq. (40),

in which the thermodynamic limit has not been applied.

V. CONCLUSIONS

We applied a local thermostating procedure to a fluid

simulated by MPCD and analyzed the behavior of the

correlation functions of hydrodynamic fluctuations in this

system. By considering the characteristic timescales in-

volved in the evolution of hydrodynamic perturbations,

we suggested that the application of the thermostat at

every simulation step (STI) modifies in an effective way

the relaxation rate of temperature fluctuations of MPCD

fluids since they are forced to decay faster than the re-

maining hydrodynamic modes. When the thermostat is

applied at larger regular simulation-step intervals (PTI),

this relaxation time is also modified but to a smaller ex-

tent.

We used FH with the purpose of studying the spectra

of spontaneous fluctuations occurring under such conditions

from a theoretical point of view. This is justified because

correlation functions in MPCD fluids have been shown to

be in agreement with linearized hydrodynamics [30], and

046708-11
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FIG. 5. (Color online) Density autocorrelation function in MPCD

for different values of the wavenumber k. Simulation results are

shown by symbols, and lines represent the theoretical fit obtained

from Eq. (40).

FH can be used to describe the spatial and time evolution

of hydrodynamic fluctuations in the linear regime. The

main difference of our theoretical analysis with respect to

the usual description of fluctuations in liquids consisted in

considering the explicit interaction with a local thermostat

that is applied at regular time intervals. When the thermostat

is applied at every simulation step, we showed that tem-

perature fluctuations evolve toward equilibrium on a very

short timescale and can be identified as fast variables in

comparison with density and velocity fluctuations that relax

toward equilibrium on slower timescales. By applying a

timescale separation procedure, it was then possible to obtain

a reduced description in terms of the slow variables only,

from which the dynamic structure factor, the autocorrelation

function of the longitudinal velocity, and the density-velocity

cross-correlation were obtained, Eqs. (36), (37), and (38).

These correlations were compared with those obtained directly

from simulations of strongly thermostatted MPCD for different

densities, and the results were found to be in very good

agreement.

In the general case, we solved for the hydrodynamic

modes of a thermostatted fluid in terms of the time interval

for the application of the thermostat and under the usual

hydrodynamic approximation cT k ≫ Dlk
2,DT k2. We used

these results to obtain the dynamic structure factor of a

fluid interacting with the thermostat. In order to compare

our analytical and numerical results, we have proposed that

the material parameters of the fluid are not significantly

modified by the thermostat. This allows for recovering

the expected behavior of the dynamic structure factor in

a very simple way in the whole range from no appli-

cation of the thermostat to application of the thermostat

at every simulation step. However, it is worth stressing

that this assumption is justified only after the good agree-

ment observed between analytical and numerical results.

In principle, the rigorous justification for this approxima-

tion can be achieved from kinetic theory or projection

operator techniques, which have been used elsewhere to

calculate the kinetic and collisional contributions of ν and

DT [18,30–32]. This calculation goes beyond the scope of

this work, in which emphasis laid upon the mesoscopic

behavior of thermostatted MPCD fluids. In conclusion, it

is fair to say that our model can be considered as a good

approximation that is useful for estimating relaxation rates of

hydrodynamic fluctuations in partially thermostatted MPCD

fluids.

Our results show that the application of a thermostat might

change drastically the way in which fluctuations propagate

in MPCD. In addition, they show that the dynamics of

fluctuations under the thermostatting procedure that tends to

restore the temperature on the cell level at every simulation

step is the one to be expected for an isothermal liquid

with an ideal equation of state, since the thermal mode is

eliminated, while density and logitudinal velocity perturba-

tions propagate at the isothermal sound speed. Finally, if

partial thermostatting is implemented, e.g., in order to reduce

computational costs, then it should be taken into account

that propagation of the hydrodynamic modes will exhibit

intermediate features between the adiabatic and the isothermal

cases. Our model allows for an approximate estimation of these

properties.

ACKNOWLEDGMENTS

H.H. acknowledges financial support from DAAD, Ger-

many (2008), and DGAPA-UNAM, Mexico (2009–2010).

G.S. would like to thank G. Gompper and R. Winkler for

helpful discussions.

046708-12



HYDRODYNAMIC FLUCTUATIONS IN THERMOSTATTED . . . PHYSICAL REVIEW E 83, 046708 (2011)

APPENDIX A: GENERATING RANDOM VARIATES FROM

DISTRIBUTION EQ. (7)

The acceptance-rejection method was invented by John von

Neumann [49,50] and allows one to draw random numbers

from almost arbitrary probability distribution functions. Given

a distribution p(x), from which random variates are to be

sampled, a second distribution function g(x) is chosen for

which it is known how to generate random variates. Given a

constant value c such that c g(x) > p(x),∀x ∈ R [the simplest

choice would be g(x) = const. and cg(x) = max p(x)], the

algorithm proceeds in three steps: (i) choose a variate ξ1 �→
G(σ 2

g ,µg), where G(.,.) is a generator of a random variate from

the distribution g(x) with variance σ 2
g and average value µg;

(ii) draw a second random variate ξ2 ∈ [0,1] from a uniform

distribution; (iii) if ξ2 < p(ξ1)/cg(ξ1), accept ξ1 as random

number, otherwise repeat steps (i) to (iii). The distribution

function of random variates ξ1 will then correspond to p(x).

Random energies for the distribution function P (Eµ),

Eq. (7), were chosen by means of the acceptance-rejection

method, where energies Eµ ∈ R
+ are admissible. For simplic-

ity, we will omit the subscript µ in the following discussion.

The restricting function in the acceptance-rejection method

was chosen as exponential distribution

g(E) = α exp(−α |E − Em|), (A1)

with Em = (φ/2 − 1)/β the position of the maximum,

max[P (E)] = P (Em), and β = 1/kBT .

A convenient choice for α was found as α = β
√

2/φ,

which ensures g(E) > P (E),∀E. Figure 6 (left) shows a

comparison between the probability distribution P (E; β,φ)

and the restricting function g(E; α,φ) with values for α

according to this criterion. The rejection function is given as

the ratio between P (E) and g(E), which is

q0(E; α,β,φ) = 1

αŴ(φ/2)
βφ/2Eφ/2−1e−βE e|E−(φ/2−1)/β|α.

(A2)

For the most efficient method it is useful to have the

function normalized to its maximum value, i.e., q(E; α,β,φ) =
q0(E; α,β,φ)/ max[q0(E; α,β,φ)] normalized to 1. The energy

E∗ at the maximum position of q0 is found to be E∗ = (φ/2 −
1)/(β − α). The normalized rejection function is thereby

found to be

q(E; α∗,β,φ) = Eφ/2−1e−βE e|βE−(φ/2−1)|α∗

[

φ/2−1

β(1−α∗)

]φ/2−1
e(φ/2−1)(1+α∗)

, (A3)

where we have introduced the temperature-scaled parameter

α∗ = α/β. Figure 6 (right) shows q(E; α∗,β,φ) for different

numbers of degrees of freedom.

For larger values of φ, P (E) can be approximated by its

limiting distribution, i.e., the shifted Gauss distribution with

variance 3kBT and average value Em. Since the generation of

Gaussian random numbers is faster than by the acceptance-

rejection method, P (E) is approximated by a Gaussian for

φ > 100. As shown in Fig. 7 this approximation introduces

an absolute error ǫ < 1%, which seems to be tolerable for the

present investigation.
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FIG. 6. (Color online) Left: comparison between restricting

function and the energy distribution function, Eq. (7). Right: the

normalized rejection function, Eq. (A3).

APPENDIX B: CALCULATION OF σtherm

Here we will estimate the strength of the energy fluctuations

induced by the thermostat σtherm. With this purpose we will

consider Eq. (7), which expresses the conditional probability,

P (Eµ|Nµ), for observing the energy Eµ within a MPCD cell
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FIG. 7. (Color online) Difference between the energy distribution

function, Eq. (7), and a Gaussian distribution function.
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after applying the MBST, given that the number of particles

in the cell is Nµ. Let P (Eµ,Nµ) be the joint probability for

observing a cell with energy Eµ and number of particles Nµ

after thermostatting, then the reduced probability for observing

the energy Eµ regardless of the number of particles in the cell is

P (Eµ) =
∞
∑

Nµ=1

P (Eµ,Nµ) =
∞
∑

Nµ=1

P (Nµ)P (Eµ|Nµ), (B1)

where P (Nµ) is the probability for observing Nµ particles. For

MPCD, it is well known that the number of particles per cell

follows a Poisson distribution within a very good approxima-

tion, i.e., P (Nµ) = MNµe−M/Nµ!. However, this expression

for P (Nµ) makes the explicit calculation of P (Eµ) rather

complicated. In order to simplify the analysis, we will suppose

that fluctuations in the number of particles per cell are small in

such a way that P (Nµ) ≃ δMNµ
[48]. Replacing the previous

expression for P (Nµ) and Eq. (7) into Eq. (B1), we obtain

P (Eµ) ≃ 1

EµŴ
[

3
2
(M − 1)

]

(

Eµ

kBT0

)
3
2

(M−1)

e−Eµ/kBT0 .

(B2)

As indicated in Sec. III A, we will further approximate

P (Eµ) by a Gaussian distribution. As usual, this can be done

by expanding the logarithm of P (Eµ) in a Taylor series around

its maximum which is located at Ēµ = kBT0(3M − 5)/2. This

procedure yields

P (Eµ) ≃ 1√
2πs2

exp

[

(Eµ − Ēµ)2

2s2

]

, (B3)

where

s2 = 1
2
k2
BT 2

0 (3M − 5) (B4)

is the variance of the approximated distribution.

We can use Eq. (B4) in order to approximate the correlation

function for the noise term δE ∝ E(�r,t) − E0 ≃ Eµ − Ēµ,

which is the local fluctuation of energy per unit volume induced

by the thermostat. It can be noticed that since the thermostat

is applied only at regular time intervals we have

〈δE(�r,t)δE(�r ′,t ′)〉

=
{

1
2a6 k

2
BT 2

0 (3M − 5) , if �r = �r ′ and t = t ′ = qτ

0, otherwise
,

(B5)

where q is an integer number. This expression indicates that

δE is neither correlated for different cells neither for different

times. In addition, the correlation vanishes whenever the

thermostat is not applied.

In MPCD simulations, both space and time are discrete.

Fields are measured at the cell level and at times that have

the form t = n�t,t ′ = n′�t . For large systems and long

simulation times, Eq. (B5) can be recast into the continuous

form

〈δE(�r,t)δE(�r ′,t ′)〉 = τ

2a3
k2
BT 2

0 (3M − 5)δ(�r − �r ′)δ(t − t ′),

(B6)

from which σ 2
therm is identified to be

σ 2
therm = τ

2a3
k2
BT 2

0 (3M − 5) . (B7)

APPENDIX C: TIMESCALE SEPARATION

We will consider here the application of the timescale

separation formalism for linear systems of Geigenmüller,

Titulaer, and Felderhof [45,46] to a strongly ther-

mostatted system described by Eq. (23). In this for-

malism a system of slow, �x, and fast, �y, variables

with the same dimensions coupled by the linear equa-

tion

∂t

(

�x
�y
)

= −
(

Mxx Mx y

M yx M yy

)( �x
�y

)

(C1)

is considered.

The distinction between slow and fast variables emerges

from the observation that Mxx ∼ τ−1
s , while Myy ∼ τ−1

f , with

ε = τf /τs ≪ 1. Here we shall assume that Eq. (C1) can be

recast directly in the form

∂t

( �x
�y

)

= −
[(

0 0

0 F

)

+
(

A B

C D

)]( �x
�y

)

, (C2)

where the matrix F is order τ−1
f , and A, B, C, and D are

all order τ−1
s . It should be stressed that the general timescale

separation procedure of Refs. [45,46] considers cases where a

strong coupling between �x and �y exists, for instance, because

Mx y ∼ τ−1
f . In these cases a linear change of variables from �x

to �x ′ = �x + C0 �y yields also an equation of the form Eq. (C2).

From Eq. (C2) it has been shown in Refs. [45,46], that on

the slow timescale, i.e., for t ≫ τf , the dynamics of �x can be

rigorously approximated by a reduced equation of the form

∂t �x = −Mred
xx �x, (C3)

which does not involve the fast variables �y. The reduced

matrix, Mred
xx , can be written as an expansion in powers of

ε [45,46],

Mred
xx = A − εBF−1D

+ ε2(BF−1DF−1C−BF−2CA) + O(ε3). (C4)

It can be easily shown that Eq. (22) can in fact be written

in the form of Eq. (C2), by choosing

A =
(

0 cT k

−cT k Dlk
2

)

, B =
(

0

−cT k

)

,

C = (0,(γ − 1)cT k), D = 0, F = γDT k2 + τ−1. Explicit cal-

culation of the products appearing on the right-hand side of

Eq. (C4) with the previous expressions for A . . . F, yields

Eq. (23).
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APPENDIX D:THEMOSTATTED HYDRODYNAMIC

MODES

The hydrodynamic modes of the fluid described by Eq. (17)

are given by the roots of det M(�k,ω) = 0. The explicit form of

the previous expression is

z(z + Dlk
2)(z + γDT k2 + τ−1) + zγ c2

T k2

+ γ c2
T k2(DT k2 + τ−1) = 0, (D1)

where we have defined z = −iω, for simplicity. We will find

the solutions of Eq. (D1) under the approximation cT k ≫
Dlk

2,DT k2, while τ will be an unrestricted quantity. Up to

zero order in the small quantities Eq. (D1) reads

z(0)3 + z(0)2τ−1 + z(0)γ c2
T k2 + c2

T k2τ−1 = 0, (D2)

which has three roots given by Eqs. (42)–(44) with

B = (P +
√

P 2 + Q3)
1
3 + (P −

√

P 2 + Q3)
1
3 , (D3)

A = (P +
√

P 2 + Q3)
1
3 − (P −

√

P 2 + Q3)
1
3 , (D4)

P = 1
54

[

9c2
T k2 (γ − 3) τ−1 − 2τ−3

]

, (D5)

Q = 1
9

(

3γ c2
T k2 − τ−2

)

. (D6)

Up to first order in the small-frequency Dlk
2, the secular

equation reduces to

z(1)
(

3z(0)2 + γ c2
T k2 + 2z(0)τ−1

)

+ Dlk
2(z(0)2 + z(0)τ−1)

+ γDT k2
(

z(0)2 + c2
T k2

)

= 0. (D7)

By solving this expression for z(1), and replacing the roots

of order zero, s
(0)
i , Eq. (45) is obtained.
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