001     689
005     20240610115326.0
024 7 _ |a 10.1021/la0013805
|2 DOI
024 7 _ |a WOS:000167762700007
|2 WOS
024 7 _ |a 2128/1465
|2 Handle
037 _ _ |a PreJuSER-689
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Schwarz, U. S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Bending frustration of lipid-water mesophases based on cubic minimal surfaces
260 _ _ |a Washington, DC
|b ACS Publ.
|c 2001
300 _ _ |a 2084 - 2096
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Langmuir
|x 0743-7463
|0 4081
|y 7
|v 17
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Inverse bicontinuous cubic phases are ubiquitous in lipid-water mixtures and consist of a lipid bilayer forming a cubic minimal surface, thereby dividing space into two cubic networks of water channels. For small hydrocarbon chain lengths, the monolayers can be modeled as parallel surfaces to a minimal midsurface. The bending energy of the cubic phases is determined by the distribution of Gaussian curvature over the minimal midsurfaces which we calculate for seven different structures (G, D, P, I-WP, C(P), S, and F-RD). We show that the free-energy densities of the structures G, D, and P are considerably lower than those of the other investigated structures due to their narrow distribution of Gaussian curvature. The Bonnet transformation between G, D, and P implies that these phases coexist along a triple line, which also includes an excess water phase. Our model includes thermal membrane undulations. Our qualitative predictions remain unchanged when higher order terms in the curvature energy are included. Calculated phase diagrams agree well with the experimental results for 2:1 lauric acid/dilauroyl phosphatidylcholine and water.
536 _ _ |a Polymere, Membranen und komplexe Flüssigkeiten
|c 23.30.0
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK53
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|0 P:(DE-Juel1)130665
|b 1
|u FZJ
773 _ _ |a 10.1021/la0013805
|g Vol. 17, p. 2084 - 2096
|p 2084 - 2096
|q 17<2084 - 2096
|0 PERI:(DE-600)2005937-1
|t Langmuir
|v 17
|y 2001
|x 0743-7463
856 4 _ |u https://juser.fz-juelich.de/record/689/files/111.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/689/files/111.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/689/files/111.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/689/files/111.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:689
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k 23.30.0
|v Polymere, Membranen und komplexe Flüssigkeiten
|l Festkörperforschung
|b Struktur der Materie und Materialforschung
|0 G:(DE-Juel1)FUEK53
|x 0
914 1 _ |y 2001
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-II
|l Theorie II
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB31
|x 0
970 _ _ |a VDB:(DE-Juel1)111
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21