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Inverse bicontinuous cubic phases are ubiquitous in lipid-water mixtures and consist of a lipid bilayer
forming a cubic minimal surface, thereby dividing space into two cubic networks of water channels. For
smallhydrocarbonchain lengths, themonolayers canbemodeledasparallel surfaces toaminimalmidsurface.
The bending energy of the cubic phases is determined by the distribution of Gaussian curvature over the
minimal midsurfaces which we calculate for seven different structures (G, D, P, I-WP, C(P), S, and F-RD).
We show that the free-energy densities of the structures G, D, and P are considerably lower than those
of the other investigated structures due to their narrow distribution of Gaussian curvature. The Bonnet
transformation between G, D, and P implies that these phases coexist along a triple line, which also
includes an excess water phase. Our model includes thermal membrane undulations. Our qualitative
predictions remain unchanged when higher order terms in the curvature energy are included. Calculated
phase diagrams agree well with the experimental results for 2:1 lauric acid/dilauroyl phosphatidylcholine
and water.

I. Introduction

When dissolved in aqueous solvent, lipids self-assemble
into an amazing variety of different structures as a
function of concentration and temperature.4-6 Most promi-
nent is the lamellar phase, which consists of a stack of
lipid bilayers separated by layers of water. In fact, the
lipid bilayer constitutes the basic building block of
biological membranes; in eucaryotic cells, it not only
envelopes the cell itself but also separates its nucleus and
its organelles from the cytosol and builds up the endo-
plasmic reticulum, the Golgi apparatus, and the unila-
mellar vesicles which serve as reaction chambers and
transport vehicles. The predominance of the lamellar
phase at ambient temperatures derives from the fact that
in contrast to surfactants, which usually have large
headgroups and form micelles, lipids have rather bulky
hydrocarbon chains. A so-called bilayer lipid has a chain
region cross section which is of similar size as the area per
headgroup; thus the spontaneous curvature is small and
the lipid forms a lamellar phase.

If temperature is increased, the size of the headgroups’
hydration shell decreases, spontaneous curvature in-
creases, and the lipid monolayers tend to curve toward
the water regions. Since the tendency of lipid monolayers
to curve is frustrated in the lamellar phase, it is often
found to transform into a inverse hexagonal phase which

consists of a two-dimensional array of inverse cylindrical
micelles. Spontaneous curvature can also be increased by
changing molecular architecture, by adding lipids with
bulkier chains, or by increasing salt concentration (since
salt screens electrostatic repulsion between charged
headgroups).7 Lipids with spontaneous curvature are often
called nonbilayer lipids. For large spontaneous curvature,
a cubic phase of inverse spherical micelles is sometimes
observed.6 The inverse phases have been denoted type II
(water-in-oil) phases in contrast to type I (oil-in-water)
phases, which dominate surfactant phase behavior.8
Although there are some lipids which also form type I
phases, we focus here on type II phases since these are
the ones formed by the majority of biologically relevant
lipids.

One of the intriguing aspects of the polymorphism of
lipid-water mixtures is the existence of yet another
structural type, which often occurs between the lamellar
and the inverse hexagonal phase. Like the lamellar phase,
these inverse bicontinuous cubic phases (IBCPs) consist
of lipid bilayers. However, now a single lipid bilayer
extends throughout the whole of space and divides it into
two disconnected but interpenetrating labyrinths of cubic
symmetry, which both are filled with water. Thus the
structure can also be considered to be built from water
channels (that is, inverse cylindrical micelles) as is the
inverse hexagonal phase, only that now the channels meet
in vertexes with a coordination number related to the
topology of the cubic phase. Although the IBCPs unite the
structural elements of the lamellar and the inverse
hexagonal phases, in contrast to them they are optically
isotropic and highly viscous. Like the inverse hexagonal
phase, the IBCPs are stabilized by spontaneous curvature.
Therefore they are formed by non-bilayer lipids and their
stability can be controlled by changing the lipids’ spon-
taneous curvature.

The generic occurrence of IBCPs in lipid-water mix-
tures and their property of dividing space into two
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interwoven aqueous compartments lends itself readily to
speculations on their biological relevance, e.g., on their
possible occurrence in the endoplasmic reticulum or the
Golgi apparatus.5,6 A recent survey of a vast number of
transmission electron microscopy (TEM) pictures suggests
that IBCPs are indeed ubiquitous in biological systems.9,10

The abundance of non-bilayer lipids in biological systems
is a longstanding puzzle, and several studies have explored
the possible relationship between lipid polymorphism and
biological membrane function (for reviews see refs 11-
13). In particular, it was shown that certain cells such as
Escherichia coli regulate the relative amount of bilayer
and non-bilayer lipid in order to control membrane
morphology and function of membrane proteins. E. coli
mutants lacking the non-bilayer lipid phosphatidyletha-
nolamine were found to be severely impaired in regard to
protein transport across the plasma membrane.14 Luzzati
and co-workers have pointed out that if any IBCP had a
biological function, it should be stable at physiological
temperatures and in excess water.5,12 IBCPs are also
relevant for biotechnological applications; e.g., they have
been used recently as an artificial matrix which enables
membrane proteins to crystallize in a three-dimensional
array.15

Since IBCPs consist of a lipid bilayer separating two
labyrinths of water, is it reasonable to assume that the
two monolayers are arranged in a way which is locally
symmetrical about their midsurface. In differential ge-
ometry, a surface which curves to both sides in the same
way is known as a minimal surface, i.e., a surface for
which the mean curvature vanishes at each of its points.
Therefore the midsurfaces of the IBCP lipid bilayers are
often modeled as triply periodic minimal surfaces (TPMS,
sometimes also denoted IPMS for infinite periodic minimal
surfaces) of cubic symmetry.16,17 Indeed it has been
confirmed by a thorough analysis of electron density maps
derived from X-ray data that the midsurfaces of these
structures can be very close to minimal surfaces.5 Note
that the stronger requirement of the monolayers’ global
symmetry about the midsurface leads to a certain subclass
of cubic TPMS which is called balanced since then the two
water labyrinths have to be congruent to each other.

Since the seminal work of Schoen,18 it is known that
there exists a large variety of different cubic TPMS. Before
Schoen’s work, only P, D, and C(P) were known from the
19th century work of Schwarz and his students; then
Schoen described G, F-RD, I-WP, O, C-TO, and C(D). More
cubic TPMS have been found later by Karcher and
Polthier,19 Fischer and Koch,20 and others, but most of
them seem to be too complicated to be of physical relevance.
In Figures 2 and 3 we depict surfaces corresponding to

the seven different TPMS treated in this work. Until now,
only G, D, and P have been established to be realized as
IBCP in lipid-water mixtures.4-6 One system for which
all three of these phases is stable is 2:1 lauric acid (LA)/
dilauroyl phosphatidylcholine (DLPC) and water (with P
coexisting with excess water).21 The only other system for
which G, D, and P are known to be stable is didodecyl-
phosphatidylethanolamine and water;22 however, here G
exists with hardly no hydration at all, and the regions for
D and P are very difficult to access experimentally, thus
this system should not be compared with the theoretical
results for fully hydrated phases presented here. In all
other systems with IBCPs, only one or two of them are
stable (for example, for monoolein and water, G and D are
stable, with D coexisting with excess water23). In this work
we present a model which can explain why only G, D, and
P are observed in lipid-water mixtures and why their
actual occurrence seems to depend on the specific system
under investigation. The phase diagram predicted by our
model agrees well with the experimental phase diagram
for 2:1 LA/DLPC and water.

Exact (Weierstrass) representations are only known for
G, D, P, and I-WP.24-27 However, it has been shown in
recent studies28,29 that these and other cubic TPMS can
be generated as isosurfaces of a density field, which
minimizes the free-energy functional of a simple Ginz-
burg-Landau model for amphiphilic systems.30 Using the
Fourier representations of ref 29, it is now possible to
investigate also the physical properties of the IBCPs, for
whose minimal midsurfaces no exact representations are
known. In particular, the question of whether these
structures might correspond to stable IBCPs in lipid-
water mixtures can now be addressed quantitatively. In
this work we study G, D, P, I-WP, S, C(P), and F-RD, of
which G, D, P, S, and C(P) are balanced.

The most important contribution to the free energy of
amphiphilic interfaces is the curvature energy, which
dominates all other contributions if the radii of curvature
are large compared with molecular length scales.31 For
the inverse phases in lipid-water mixtures, it is generally
assumed that another important contribution to the free
energy is the stretching energy of the hydrocarbon
chains.32-34 To attain optimal free energy, the neutral
surfaces of the two monolayers should realize at the same
time constant mean curvature c0 and constant distance
l to the minimal midsurface. Since this is not possible
geometrically, the free energy will always be frustrated.35

The relative importance of interface (bending) and bulk
(stretching) contributions in self-assembled interfaces is
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a long-debated issue. For amphiphilic systems, for which
the free energy contributions come mainly from the
interfaces, the main problem is of a mathematical nature:
the overall solution can be investigated only in a model
which allows the interfacial positions to adjust themselves
freely. In contrast, in diblock copolymer systems bulk
contributions are much more important and models based
on random polymer coils and interacting monomer densi-
ties are more adequate. Self-consistent mean-field theory
for diblock-copolymer systems suggests that in this case,
interfacial tension and stretching are equally important.36

Recently, this framework has been adapted to treat lipid-
water mixtures.37 This approach is complementary to the
membrane approach; it is most useful for the investigation
of systems, in which the internal structure of the bilayer
is not uniform. However, self-consistent field theory for
large molecules is not expected to describe amphiphilic
systems well at large lattice constants, when the mem-
branes’ internal structure is essentially preserved and
the main contributions to the free energy depend on their
shape. In particular, only in the membrane approach does
it becomes possible to address the role of thermally
activated membrane undulations.

To study interface-dominated systems, it has been
suggested in ref 32 to consider the two classes of surfaces,
which can completely relax one of the two relevant
contributions. Parallel surfaces to the minimal midsurface
realize the optimal chain length l and are frustrated only
in their bending energy, while constant-mean-curvature
surfaces (CMC-surfaces) realize the given spontaneous
curvature but are frustrated in their stretching energy.
The mathematical properties of parallel surfaces are well-
known in terms of the properties of the underlying minimal
surface; the parallel-surface model has therefore been the
main tool for the investigation of IBCPs.21,32,38,39 Up to
now, the main difficulty of this approach has been to take
into account the variation of Gaussian curvature over the
minimal midsurface. In earlier work, the curvature energy
was therefore expanded in moments of the distribution of
the Gaussian curvature. In ref 32 this was done up to
eighth order for D and in ref 39 up to second order for P,
D, and G. CMC-surfaces21,32,34 have the advantage that
they offer a unified picture for all relevant phasess
lamellar, inverse bicontinuous cubic, inverse hexagonal,
and inverse micellar cubic phases are modeled by planes,
cubic CMC-surfaces, cylinders, and spheres, respectively.
However, since no exact representations are known, the
stretching frustration for IBCPs has so far been evaluated
numerically for D only.32

We will show below that in the case of short chains (or
large lattice constants), stretching energy is prohibitively
large, and the two monolayers of a IBCP in lipid-water
systems can be modeled by parallel surfaces. In the case
of long chains (or small lattice constants), we expect
stretching and bending to be equally important; this agrees
with the results for diblock copolymers, which are in the
long chain limit. Our reasoning implies that CMC-surfaces
are not a good representation of IBCPs in lipid-water
systems for physical reasons. However, for small distances
to the minimal midsurface, their mathematical properties
are very similar to the ones of parallel surfaces;32,40 thus
many results from the parallel surface model will carry

over to the CMC-model. In general, however, the parallel
surface model is more appropriate both for physical and
for mathematical reasons. Moreover, there is strong
experimental evidence for it, both from a detailed recon-
struction of electron densities5 and from analysis of
swelling data.41

In contrast to earlier work, we evaluate the curvature
energy in the parallel surface model without any expansion
and to high numerical accuracy by first calculating the
distribution of Gaussian curvature over the minimal
midsurface. For G, D, P, and I-WP this can be done from
their Weierstrass representations. We also consider the
structures S, C(P), and F-RD by calculating the distribu-
tion from the representations which we obtained from
Ginzburg-Landau theory. Our main result is that the
free-energy densities of the structures G, D, and P are
considerably lower than those of the other investigated
structures due to their narrow distribution of Gaussian
curvature over the minimal midsurface. We show that
this result persists when thermal membrane undulations
and higher order terms in the bending energy are
considered and argue that potential additional contribu-
tions to the free energy are unlikely to change it. This
explains why only G, D, and P have been observed in
lipid-water mixtures. In fact, the calculated phase
diagram agrees nicely with the experimental one for 2:1
LA/DLPC and water, for which these three phases coexist.
We show that due to the existence of a Bonnet transfor-
mation between G, D, and P, these phases coexist along
a triple line in our model. Simultaneously, P coexists with
an excess of water due to a mechanism called emulsifica-
tion failure. The Bonnet transformation also implies that
the free-energy densities of G, D, and P scale as a function
of concentration with a universal geometrical quantity,
which we term topology index. Since the topology index
decreases from G to D to P, the gyroid G is most prominent,
followed by smaller regions of stability for D and P at
higher water concentrations. Any additional contribution
to the free energy, which introduces a new length scale,
is expected to change the delicate balance between these
three phases; this includes stretching contributions and
van der Waals and electrostatic interactions. Since such
additional effects are specific to a given experimental
system, this result explains qualitatively why usually only
one or two of these phases are observed in lipid-water
mixtures.

The paper proceeds as follows. In section II, we specify
the free-energy expression which has to be evaluated for
each type of minimal midsurface and discuss some
immediate consequences of the model. The calculation of
the distribution of Gaussian curvature is explained in
section III for P, D, G, and I-WP from their Weierstrass
representation. Results for the Gaussian-curvature dis-
tributions for S, C(P), and F-RD are obtained in section
IV from the representations derived recently from a simple
Ginzburg-Landau model. These results are combined in
section V to predict phase behavior and to numerically
calculate phase diagrams. In section VI, we discuss which
physical mechanisms will break the Bonnet symmetry
between P, D, and G. Finally, we compare our results
with experiments and conclude in section VII.

II. The Model

The bending energy of one lipid monolayer is described
by the Canham-Helfrich Hamiltonian42,43
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where the integration extends over the monolayer’s
neutral surface, which is at a distance l from the minimal
midsurface of the bilayer. In the framework of the
curvature model, bending and stretching contributions
decouple at the neutral surface;31 this allows the area-
stretching contributions to be disregarded. The neutral
surface has been shown experimentally to be located close
to the polar-apolar interface.44 In the curvature model
(1), the neutral surface is characterized by mean curvature
H, Gaussian curvature K, and differential area element
dA; the superscript l indicates that the neutral surface is
a parallel surface. The model parameters are the spon-
taneous curvature c0, the bending rigidity κ, and the
saddle-splay modulus κj of the monolayers. For lipids, the
bending rigidity κ for a monolayer is of the order 10-20
kBT. Usually the saddle-splay modulus κj is assumed to
have a small negative value; in fact the curvature model
of eq 1 without any additional constraints is well-defined
only for -2κ e κj e 0.45 The spontaneous curvature c0 can
be considered to result from the mismatch between optimal
headgroup area, volume incompressibility of the chains,
and optimal chain length. For nonionic lipids, it depends
mainly on temperature, which changes the headgroup
hydration and therefore optimal headgroup area. Since
lipids typically form lamellar and inverse phases, where
the monolayers prefer to bend toward their polar sides,
we define positive curvature to be toward the water
regions. We assume that spontaneous curvature scales
with temperature as c0 ∼ (T - Tb), since such a linear
relationship seems to hold very well for ternary surfactant
systems.46

The stretching energy can be assumed to be harmonic
about the average chain length l, so that

where L is the local chain length. The stretching modulus
ks is itself a function of the average chain length l. The
relevant scaling law has to be obtained from a microscopic
model; here, we model the lipid monolayer as a Gaussian
polymer brush grafted to the polar-apolar interface, but
more realistic models give similar results.31 The stretching
energy per chain reads Es ) (3kBT/2N)(l/aK)2, where aK is
the (microscopic) Kuhn length and N the number of Kuhn
segments. Enforcing the volume constraint ld2 ) NaK

3

(where 1/d2 is the grafting density) and transforming from
energy per chain to energy per area results in a potential
of the form eq 2 with ks ∼ kBT(aK/ld4). Thus the stretching
modulus ks scales inversely with average chain length
lsstretching becomes very difficult for short chains.31

Although the bending energy eq 1 is well known not to
depend on microscopic details, for our purpose it is
important to note that the bending rigidity κ also depends
on the average chain length l. Starting from the stretching
energy of eq 2 and taking into account how the chain
volume varies with curvature results in the bending energy
of eq 1 with κ ∼ ksl4 ∼ kBT(aKl3/d4).31 The result that the
bending rigidity κ scales with the third power of film
thickness l is well known also from the elasticity of thin
solid sheets.

We now can estimate the relative importance of bending
and stretching contributions. It is known that for both
CMC-surfaces and parallel surfaces, the normalized
standard deviations of L and H, respectively, are almost
independent of hydrocarbon volume fraction,32 so that
〈(L - l)2〉 ∼ l2 and 〈(H - 〈H〉)2〉 ∼ 〈H〉2 ∼ a-2, where a is the
lattice constant. Therefore Es/Eb ∼ ksl2/κa-2 ∼ (a/l)2. Thus,
for small chain length l (large lattice constant a), the
stretching term is much larger and the chains can be
assumed to be of constant length. This corresponds to the
well-knownresult that thecurvatureenergy is therelevant
contribution to the free energy as long as the curvature
radii (that is the lattice constants) are much larger than
any molecular length.31 Only for large chain length l (small
lattice constant a), the bending energy becomes compa-
rable and both terms have to be considered. Experimen-
tally, this corresponds to the fact that for small water
content (i.e., chain length l of comparable size as lattice
constant a), the bicontinuous cubic phases become un-
stable with respect to the hexagonal phase, whose geo-
metrical properties require larger chain stretching. Note
that the relative importance of stretching and bending is
asymmetric: since the chain length l cannot be larger
than the lattice constant a, there is no regime in which
bending can be neglected. Thus CMC-surface will never
be a good approximation for monolayers in lipid-water
systems. However, the stretching frustration can be
relaxed by swelling the bilayer with oil; therefore CMC-
surfaces are good approximations for amphiphilic mono-
layers in ternary systems with oil, water, and amphi-
phile.40 Similar considerations of the relative importance
of stretching and bending can be found also in the context
of large membrane inclusions (such as transmembrane
proteins) where chains have to stretch in order to decrease
the hydrophobic mismatch at the inclusion boundary.33

For the rest of this paper, we proceed within the
framework of the parallel surface model. We assume that
the interfaces between the tail and headgroup regions of
the two lipid monolayers in a ICBP are located at distances
(l away from a given cubic TPMS; typically l has values
between 1 and 2 nm. Note that for a TPMS the mean
curvature satisfies H ) (c1 + c2)/2 ) 0 everywhere (where
c1 and c2 are the two principal curvatures), while the
Gaussian curvature K ) c1c2 ) -c1

2 varies as a function
of the position and is only restricted to satisfy K e 0. The
differential area element dAl, the mean curvature Hl, and
the Gaussian curvature Kl on the parallel surfaces then
follow as functions of l and the quantities dA and K on the
minimal midsurface,38,47 with

Note that these formulas are special cases of Steiner’s
theorem of integral geometry; they are therefore no
approximations for small l, but exact. Since minimal
surfaces have K e 0, positive mean curvature is defined
here to correspond to positive l.

The effective bending energy of the lipid bilayer is only
a function of the Gaussian curvature K of the minimal
midsurface since its mean curvature H vanishes. In an(44) Templer, R. H. Langmuir 1995, 11, 334-340.
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Eb ) ∫ dAl {2κ(Hl - c0)
2 + κjKl} (1)

Es ) ∫ dA ks(L - l)2 (2)

dAl ) dA(1 + Kl2)

Hl ) -Kl
1 + Kl2

Kl ) K
1 + Kl2

(3)
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expansion for small chain length l, it can be expressed as
an infinite series in powers of K. Using eq 1 and eq 3
yields up to order l2

Therefore the effective saddle-splay modulus for the lipid
bilayer, κjbi ) 2κj + 8c0lκ + 4c0

2l2κ, is not just the sum of
the monolayer’s moduli but is corrected to higher positive
values due to the presence of the spontaneous curvature
c0.7 We conclude that as long as c0l J -κj/4κ, the IBCPs are
favored over the lamellar phase, since the preferred
curvature of the monolayers translates into a topological
advantage of saddle-type bilayer structures. The third
term in eq 4 favors saddle-type structures in any case and
also removes the degeneracy which minimal surfaces
might experience under deformations which preserve the
minimal surface property. This has been noted in a seminal
work by Bruinsma;48 in his notation, we have κjj ) 4κl2 for
the elastic modulus of the K2 term.

The volume fraction occupied by the hydrocarbon can
be calculated as

where we have used the Gauss-Bonnet theorem
∫ dAK ) 2πø. A* and ø denote surface area and Euler
characteristic of the given cubic TPMS in the conventional
unit cell with unit lattice constant. For the following, it
is useful to introduce the topology index Γ ) (A*3/2π|ø|)1/2.
This quantity is independent of scaling and choice of unit
cell andcharacterizes a given TPMS topology in a universal
way; the higher its value, the smaller is the porosity and
the larger the specific surface area of a TPMS. It is the
only quantity which characterizes a two-dimensional
minimal surface in three-dimensional space independently
of lattice constant and choice of unit cell, and its relevance
for the description of bicontinuous cubic phases in am-
phiphilic systems has been discussed before.27,29,38,40,49 The
topology index of the various TPMS is of order 1 and is
given in Table 1. The gyroid G is expected to have the
highest value since it divides space into labyrinths with
3-fold coordinated vertexes. S has a similar value for Γ,
since it features a mixture of 3- and 4-fold coordinated
vertexes. Then comes the double diamond structure with
4-fold coordinated vertexes, while all other structures have
higher values. In Table 1 we collect the values of A*, ø,
and Γ for the cubic TPMS investigated in this work as
obtained from our numerical representations in the
framework of a simple Ginzburg-Landau theory (see
below). Exact values are known for G, D, I-WP, P, and
C(P) and given in Table 1. Comparing numerical and exact

values shows that for most structures, our numerical
results are quite accurate. Due to numerical limitations
for the more complicated structures, the values for S and
F-RD are less precise. In particular, we expect S to have
a smaller value for Γ than for G.

Equation 5 can be inverted numerically to give the
dimensionless function a/l, the lattice constant a in units
of the chain length l, as a function of hydrocarbon volume
v. For small v we find

In Figure 1 we plot the first-order approximation a/l ) 2
A*/v of eq 6 for all structures considered; it can be hardly
distinguished from the full curve over the full range of v.
By visual inspection of our numerical representations (see
below), we find that for all structures considered, parallel
surfaces do not self-intersect as long as v j 0.8; IBCPs can
accommodate large amounts of hydrocarbon since their
geometry is so close to that of the lamellar phase. A typical
value for l is 15 Å, so that for v ) 0.5 we have aS ) 325
Å, aF-RD ) 285 Å, aD ) 230 Å, aCP ) 211 Å, aI-WP ) 208
Å, aG ) 185 Å, and aP ) 141 Å. Note that at a given v, the
ratio of the lattice constants of two coexisting IBCPs is
simply the ratio between their scaled surface areas A*. In
Figures 2 and 3 we depict for each of the structures
considered one of the two monolayers for the hydrocarbon
volume fraction v ) 0.5. Then the volume fraction of each
of the two labyrinths is (1 - v)/2 ) 0.25.

We are now in a situation to rewrite the curvature
energy from eq 1 for our purpose. We consider a typical
experimental situation, in which temperature is controlled
at constant volume. As explained above, changing tem-
perature T amounts to changing spontaneous curvature
c0. Under the assumption of incompressibility of both

(48) Bruinsma, R. J. Phys. II 1992, 2, 425-451.
(49) Ström, P.; Anderson, D. M. Langmuir 1992, 8, 691-709.

Table 1. Euler Characteristic ø, Scaled Surface Area A* (Both in the Conventional Unit Cell), and Topology Index Γ )
(A*3/2π|ø|)1/2 for All TPMS Considered, As Obtained from Local Minima of the Free-Energy Functional of a Simple

Ginzburg-Landau Theorya

S G D I-WP P C(P) F-RD

ø -40 -8 -16 -12 -4 -16 -40
A* 5.41457 3.09140 3.83755 3.46367 2.34516 3.74820 4.77522
Γ 0.794735 0.76665 0.74978 0.74238 0.71637 0.655994 0.654174
a Exact values are known for G, D, I-WP, P, and C(P) and given in Table 2. The structures are ordered according to decreasing Γ; the

value for S is probably too large, but difficult to improve numerically.

Eb )

∫ dA {4c0
2l2

κ + (2κj + 8c0lκ + 4c0
2l2

κ)K + 4kl2K2}
(4)

v ) 1
a3 ∫-l

l
dl′ ∫ dAl′ ) 2A*( l

a) + 4π
3

ø( l
a)3

(5)

Figure 1. Lattice constant a in units of the chain length l as
a function of hydrocarbon volume v. We use a/l ) v/2A*, which
is an excellent approximation up to v ≈ 0.8, beyond which the
inverse bicontinuous cubic phases as modeled here cannot exist
anymore due to self-intersection. From left to right, the curves
correspond to P, G, I-WP, C(P), D, F-RD, and S, respectively
(the curves for I-WP and C(P) nearly collapse and therefore
appear as an apparent bold line).

a
l

) 2A*
v (1 + 1

12Γ2
v2 + O(v4)) (6)
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components, there is only one degree of freedom for
composition, which we take to be the hydrocarbon volume
v (which is equivalent to the amount of interfacial area).
Dividing the free energy by the constant volume, we arrive
at the free energy per unit volume as a function of v.
However, v is not a controlled quantity, since at two-phase

coexistence, it is not clear how it will distribute into the
two phases. The controlled quantity can be considered to
be the chemical potential coupled to v (that is the derivative
of free energysor free energy volume densitysfor hy-
drocarbon volume fractionsor interfacial area), and
therefore phase transitions have to be calculated by using
the Maxwell construction for the free energy density as
a function of v (which amounts to requiring the same
chemical potential for both phases). We want to remark
parenthetically that the free energy per unit area cannot
be used to calculate phase coexistences, since an exchange
of area, controlled by the chemical potential of the lipid,
has to be allowed between coexisting phases.

We write the free energy volume density dimensionless
by using a factor l/(2κc0

2). For the lamellar phase the
hydrocarbon volume fraction v ) 2 l/a, thus its dimen-
sionless free-energy density follows from eq 1 to be

The larger v, the smaller a and the more frustrated
curvature energy per volume accumulates.

For IBCPs, we again use eq 1 and eq 3 in order to write
the dimensionless free-energy density as a function of
hydrocarbon volume fraction v and the properties of the
bilayers minimal midsurface

where again we have used the Gauss-Bonnet theorem
and defined r ) -κj/2κ. As mentioned above, the curvature
model eq 1 without any additional constraints is well-
defined for 0 e r e 1 and bicontinuous phases are favored
for c0l J r/2. A*, K*, and ø refer to a conventional unit cell.
Using eq 6 to lowest order, a/l ) 2A*/v, and defining
¥(K*) ) K*A*/8πø, we rewrite eq 8 as

In eq 9 and below, spontaneous curvature c0 is measured
in units of 1/l. Since for the minimal midsurface both K*
and ø are negative, ¥(K*) is a positive quantity which
varies over the surface. Note that ∫(dA*/A*)¥(K*) ) 1/4
due to the Gauss-Bonnet theorem. The free-energy
density fL of the lamellar phase, eq 7, is a special case of
fb, with ¥(K*) ) ø ) 0. In this work, we will treat the
free-energy density eq 9 without any further approxima-
tions. Previously, similar expressions have been expanded
in small v (which is equivalent to small l),32,39 similarly
as discussed in eq 4. In fact, each term (Kl2)n in an
expansion for small l corresponds to a term v2n+1 in an
expansion for small hydrocarbon volume v. Since Kl2 )
-¥(K*)(v/Γ)2, higher-order terms in eq 1 would result in
a free-energy density which has a similar structure as eq
8. As we will see below, this means that our results will
remain valid in the case that higher-order terms are
included in the curvature energy of the monolayers.

Figure 2. One of the two monolayers of P, D, G and I-WP for
hydrocarbon volume fraction v ) 0.5. These structures have
space groups Pm3hm, Fd3hm, I4132, and Im3hm, respectively. In
the full structures, a second monolayer exists parallel to the
one shown. Each monolayer defines a space-percolating network
filled with water. For the balanced cases P, D, and G, the second
network is congruent to the first; this additional symmetry
changes the structures’ space groups to Im3hm, Pn3hm, and Ia3hd,
respectively. For I-WP, the two networks are different and only
the monolayer corresponding to the I network is shown.

Figure 3. One of the two monolayers of S, F-RD, and C(P) for
a hydrocarbon volume fraction v ) 0.5. These structures have
space groups I4h3d, Fm3hm, and Pm3hm, respectively. In the full
structures, a second monolayer exists parallel to the one shown.
For the balanced cases S and C(P), the second network is
congruent to the first; this additional symmetry changes the
structures’ space groups to Im3hm and Ia3hd, respectively. For
F-RD, the two networks are different and only the monolayer
corresponding to the F network is shown.

fL ) l
2κc0

2
1

Aa
4κc0

2A ) v (7)

fb ) 2( l
a) ∫ dA* (1 + K*( l

a)2)( K*( l
a)2

(1 + K*( l
a)2)c0l

+ 1)2

-

r 4πø
c0

2l2( l
a)3

(8)

fb ) v{∫ dA*
A* (1 - ¥(K*)(vΓ)2)-1(1 -

1 + c0

c0
¥(K*) ×

(vΓ)2)2

+ r
4c0

2(vΓ)2} (9)
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It is well known that thermal fluctuations can contribute
significantly to the free energy of amphiphilic systems.
Since we consider the regime where the stretching energy
dominates, undulations are the favored fluctuation modes.
For the lamellar phase, they give rise to steric repulsion,50

which in our case can be written as

where c∞ ) 0.106 from Monte Carlo simulations51,52 and
field-theoretical calculations.53 For an IBCP, steric repul-
sion is hardly relevant since the lateral correlation length
ê| is of the order of the lattice constant a. Therefore, the
perpendicular correlation length ê⊥ ∼ (kBT/κ)1/2ê| , ê| ∼
a, and few membrane collisions should occur. However,
fluctuations of the lipid bilayer lead to a renormalization
of κ and κj54 for all phases. Since κ multiplies the average
mean curvature squared, which vanishes for the midplane,
only the renormalization of κj at length scale l has to be
taken into account. We identify the typical length scale
of a cubic structure with 〈K〉-1/2. This implies l/l ) 2Γ/v,
so that r in eq 9 gets renormalized, with

Since the renormalization increases κj, this effect increases
the topological advantage of the saddle-shaped structures
as does the spontaneous curvature. Note that for the
lamellar phase, these effects might favor the formation of
wormholes.55 Here, we neglect this aspect, as well as the
acoustic modes of the bicontinuous structures at large
wavelengths, which have been discussed by Bruinsma.48

Note also that the thermal fluctuations give a contribution
to the free energy, which is linear in the membrane area.
We have omitted this term here, since it can be absorbed
into the chemical potential of the lipid.

Having defined the model, we now turn to its phase
behavior. We first note that the dimensionless mean
curvature averaged over the parallel surface follows from
eq 3 as

where again l/a ) v/2A* and the Gauss-Bonnet theorem
has been used. It is plotted in Figure 6a. Note that all
curves fall on a universal curve when the hydrocarbon
volume fraction v is scaled with the topology index Γ. It
reaches the value c0 at

Thus, c0 is realized in a sequence given by increasing
topology index; in particular, the gyroid structure G
reaches c0 at the highest value of v. We conclude that if

all considered structures were stable, they would appear
in the sequence G-S-D-I-WP-P, etc., with increasing
water concentration.

The stability of the different phases is determined by
the free-energy density given in eq 8. The second (topo-
logical) term is easy to understand. The topological
properties of the parallel and midsurfaces are the same:
for negative saddle-splay modulus κj (r > 0), the different
IBCPs are favored according to their values of the topology
index Γ. Here the G structure performs best since it has
the lowest porosity. The first term in eq 8 is more
complicated, since the mean-curvature properties of the
parallel surfaces translate into the Gaussian-curvature
properties of the minimal midsurface in a quite compli-
cated way. As discussed above, the spontaneous curvature
of the monolayers implies a topological advantage of the
bicontinuous phases. For a more detailed analysis, which
includes all terms of the expansion, we note that the first
term in eq 8 measures the standard deviation of the
parallel surface’s mean curvature from the spontaneous
curvature. Since it follows from eq 3 that the distribution
of mean curvature over the parallel surface, HldAl, is
proportional to the distribution of Gaussian curvature
over the minimal surface, KdA, we expect that those
structures will be more favorable which have small
standard deviations for their Gaussian curvature distri-
butions.39 To quantify this concept, we now turn to the
distributions of Gaussian curvature which later will allow
us to evaluate eq 8 without any further approximations.

III. Curvature Properties from Weierstrass
Representations

Weierstrass representations are known for P, D, and
G25,27 andI-WP.24,26 Foreachof theseTPMS,a fundamental
domain can be identified, so that the rest of the surface
follows by replicating it with the appropriate space group
symmetries (Im3hm, Pn3hm, Ia3hd, and Im3hm, respectively).
The Weierstrass representation is a conformal mapping
of certain complicated regions within the complex plane
onto the fundamental domain

where (u, v) are the internal (and conformal) coordinates
of the minimal surface. The geometrical properties of such
a surface follow as

with z ) u + iv. Obviously the (isolated) poles of R(z)
correspond to the flat points (K ) 0) of the minimal surface.
Only few choices of R(z) yield embedded minimal surfaces.
The ones for D and P have been known since the 19th
century from the work of Schwarz: for D it is R(z) )
(z8 - 14z4 + 1)-1/2. P corresponds to the same region and
follows simply by the Bonnet transformation R(z) f eiθR(z)
with θ ) 90° Equation 15 implies that P and D have the
same metric and the same distribution of Gaussian
curvature. However, since they map differently into
embedding space, they have different space groups and
lattice constants. The gyroid G was discovered in 1970 by
Schoen18 as another Bonnet transformation of D, with
θ ) 38.015°. The Weierstrass representation for I-WP was

(50) Helfrich, W. Z. Naturforsch., A 1978, 33, 305.
(51) Gompper, G.; Kroll, D. Europhys. Lett. 1989, 9, 59-64.
(52) Janke, W.; Kleinert, H.; Meinhard, M. Phys. Lett. B 1989, 217,

525-529.
(53) Bachmann, M.; Kleinert, H.; Pelster, A. Phys. Lett. A 1999, 261,

127-133.
(54) Nelson, D., Piran, T., Weinberg, S., Eds. Statistical mechanics

of membranes and surfaces. In Jerusalem winter school for theoretical
physics; World Scientific: Singapore, 1989; Vol. 5.

(55) Gompper, G.; Goos, J. J. Phys. II 1995, 5, 621-634.

fsteric )
c∞

32c0
2(kBT

κ )2 v3

(1 - v)2
(10)

rR ) [r - 5
12π

kBT
κ

ln(2Γ
v )] (11)

〈Hl〉ll )
∫ dAl Hll

∫ dAl
)

(v/Γ)2

4 - (v/Γ)2
(12)

v ) ( 4c0

1 + c0
)1/2

Γ (13)

(x1,x2,x3) ) Re ∫0

u+iv
dz R(z)(1 - z2, i(1 + z2), 2z) (14)

dA(z) ) |R(z)|2(1 + |z|2)2 du dv

H(z) ) 0

K(z) ) -4
|R(z)|2(1 + |z|2)4

(15)
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found only recently.24,26 If one of its poles is chosen to be
at infinity, one has R(z) ) (z(z4 + 1))-2/3. In Figure 4 we
show the fundamental domains in the complex plane of
the different Weierstrass representations. In Table 2 we
collect the values for scaled surface area A* and lattice
constant a as they follow from the Weierstrass represen-
tations. We also give the number N of replications of the
fundamental domain needed to build up the surface in
one conventional unit cell and the values for the Euler
characteristic ø which follows from the topology generated
in this process. Note that for D one can choose another
conventional unit cell which is contained n ) 8 times in
the one chosen here. This has been done in refs 21 and 32,
then ø, A, and K scale as n-1, n-1/3, and n-2/3, respectively.
In particular, one then has ø ) -2 and A ) 1.918 892 5.
Our choice is motivated by the fact that it is the relevant
one also for ternary systems.

We define the distribution function of Gaussian cur-
vature

over some surface parametrized by internal coordinates
(u, v), where in our case dA(u,v) and K(u,v) are determined
by eq 15. For the generating functions R(u,v) detailed
above, it is not possible to calculate f analytically.
Therefore, we evaluate it numerically by considering a
histogram {fi} for a set of discrete Gaussian curvature
values {Ki} spaced equidistantly with ∆K. We cover the
(u,v) region corresponding to the fundamental domain with
a square grid of M × M points. For each point, we calculate
dA and K from eq 15 and add dA to the fi which corresponds
to the Ki with K ∈[Ki - ∆K/2, Ki + ∆K/2]. To obtain results
for one conventional unit cell, the values {fi} are then
multiplied by the number N of replications and the values
{Ki} are scaled with a2 (both N and a are given in Table
2). In practice we use M ) 30 000 and ∆K ) 0.025; the
latter value amounts to about 150 bins for the histogram.

By this procedure, we have

The moments SN of the distribution f(K) follow as

In particular, S0 ) ∑ifi ) A* and S1 ) ∑ifiKi ) 2πø.
The procedure described here was carried out to obtain

{Ki,fi} for D and I-WP. Since P and G are related to D by
a Bonnet transformation, their distributions can be
obtained simply by appropriately rescaling. For example,
for the transformation D f G, the Ki values have to be
rescaled with aG

2/aD
2 and the fi with AG*/AD*, as given in

Table 2. In Figure 5a, we plot the four different distribu-
tions obtained. P, D, and G feature one peak around a
(relatively large) K value, which means they are quite
uniformly curved, although they have flat regions, too

Table 2. Scaled Surface Area A*, Euler Characteristic ø in the Conventional Unit Cell, and Topology Index Γ ) (A*3/
2π|ø|)1/2 for Those TPMS, for Which Exact Results Are Availablea

ø A* Γ N a

G -8 3(1 + k2
2)/2k2 ) 3.091444 0.766668 24 8k1/3(1 + k2

2)1/2 ) 2.656243
D -16 3/k2 ) 3.837785 0.749844 48 8k1/3 ) 3.37150
I-WP -12 2(31/2) ) 3.464102 0.742515 48 3(31/2)k4

3/4π ) 7.949874
P -4 3k2 ) 2.345103 0.716346 12 4k1/3k2 ) 2.156516
C(P) -16 3/k3 ) 3.510478 0.655993

a For surfaces with known Weierstrass representations, we also give N, the number of fundamental domains needed to build up the
surface in the conventional unit cell, and a, the resulting lattice constant. Here k1 ) F(31/2/2, 81/2/3) where F is the incomplete elliptic integral
of the first kind; k2 ) K(1/2)/K(31/2/2) where K(k) ) F(1,k) is the complete elliptic integral of the first kind; k3 ) K(1/31/2)/K(2/3)1/2; and
k4 ) Γ(1/3). The surface areas and Euler characteristics of P, D, and G are related to each other due to their Bonnet transformations, as
described in the text. The Bonnet angle θ ) 38.015° for G follows from tan θ ) k2. Note that often a smaller unit cell is chosen for D; then
one has ø ) -2 and A* ) 1.9188925.

Figure 4. Fundamental domains for Weierstrass representa-
tions: (a) G, D, and P; (b) I-WP. Filled circles mark the poles
of the generating functions R(z) (which correspond to the flat
points of the surfaces) and the hatched regions correspond to
the fundamental domains of the TPMS.

f(K) ) ∫ dA(u, v) δ(K - K(u,v)) (16)

Figure 5. Distributions of Gaussian curvature for (a) I-WP,
D, G, and P as obtained from the Weierstrass representations
and (b) S, C(P), and F-RD as obtained from our numerical
representations as isosurfaces to Ginzburg-Landau local
minima. Since P, D, and G are related by a Bonnet transfor-
mation, they differ only by simple rescaling. These data are
also shown in ref 29.

fi ) ∫ dA(u,v) ∫Ki-∆K/2

Ki+∆K/2
dK′ δ(K′ - K(u,v)) ) ∆K f(Ki)

(17)

SN ) ∫ dK f(K)KN ) ∫ dA KN ) ∑
i

fiKi
N (18)
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(which correspond to the poles of R(z)). I-WP is bimodal;
that is, it has prominently both flat and strongly curved
regions. The strong curvature of D is somehow artificial
due to our choice of unit cell. If one corrects for this by a
factor 1/4 for the K values, it becomes clear that I-WP has
a much broader distribution than P, D, and G. This can
also be inferred from Table 3, where we list the first
moments SN of the distributions for D and I-WP. The ones
for D are identical to the ones given in ref 32 after
appropriate rescaling SN with 8-(2N+1)/3 due to the different
choice in unit cell (the numerical deviation is less than
0.02% even for N ) 8). The moments for P and G can be
calculated from the ones for D due to the Bonnet
transformation between them; e.g. SN

G ) SN
D(NG/ND)(aG/

aD)2(N-1) with the values for N and a given in Table 2. In
particular, AG* ) AD*(NGaD

2)/(NDaG
2), øG ) øD(NG/ND), and

ΓG ) ΓD(NGaD
3)/(NDaG

3)sas can be verified from Table 2.
It follows immediately that the quantity ¥(K*) ) K*A*/
8πø defined for eq 8 is invariant under a Bonnet
transformation.

To quantify the variance of the different distributions,
we calculate the standard deviation, ∆ ) 〈(K - 〈K〉)2〉/〈K〉2

) S0S2/S1
2 - 1 (here 〈. . .〉 means area average). This

quantity is independent of scaling, choice of unit cell, and
Bonnet transformation and is given in the last row of Table
3. As expected, its value for I-WP is higher than that for
P/D/G.

IV. Curvature Properties from
Ginzburg-Landau

To investigate the curvature properties of S, C(P), and
F-RD, we use the representations as isosurfaces to fields
Φ(r) which we obtained recently as local minima of a
simple Ginzburg-Landau theory for ternary amphiphilic
systems.29 The same model can also be employed for binary
systems if the scalar order parameter field Φ(r) is
interpreted tobe the local concentrationdifferencebetween
water in the first labyrinth and water in the second
labyrinth. Then the midsurface of the lipid bilayer is
identified with the surface Φ(r) ) 0. The free-energy
functional is given by

A reasonable choice for f and g has been found to be

For given model parameters (g0, g2, f0), the free-energy
functional is minimized in Fourier space by implementing
the correct space group symmetry and minimizing for
Fourier amplitudes and lattice constant with conjugate

gradients. For balanced TPMS, an additional black and
white symmetry has to be implemented. The resulting
fields Φ(r) correspond to the various local minima. We
showed in ref 29 that by tuning (g0, g2, f0) appropriately,
the Φ(r) ) 0 isosurfaces can be made to become very close
to minimal surfaces, and generated representations for
nine different TPMS: G, D, P, S, C(P), C(D), C(Y), I-WP,
and F-RD.

K distribution can be obtained from these representa-
tions as follows. By triangulating the isosurfaces with the
marching cube algorithm, we numerically obtain a metric
on the surface. From the Fourier representations of the
fields Φ(r), it is possible to calculate exactly the K values
on the vertexes of the triangulation. Using a histogram
technique like that in the Weierstrass case, it is thus
possible to obtain {Ki, fi} even for structures such as S,
C(P), and F-RD, which might be of physical relevance but
for which no exact representations are known. The
distributions obtained in this way for g0 ) -3, g2 ) 7.01,
and f0 ) 0 are plotted in Figure 5b. All three of them are
roughly trimodal and feature much stronger curved parts
than the ones discussed above. This reflects their com-
plicated shape, which makes them more difficult to access
numerically than the ones which have been generated by
Weierstrass representations; it also explains the difficulty
to obtain smooth data for the K distributions. In Table 3,
we give their first moments SN and the measure ∆ of their
variance. All of them have broader distributions than
I-WP, in the sequence S-F-RD-C(P). Therefore we can
conclude already from the distributions that the IBCPs
should become less favorable in the sequence P/D/G-I-
WP-S-F-RD-C(P).

V. Phase Behavior
Given the distribution of Gaussian curvature as his-

togram {Ki, fi}, it is straightforward to evaluate the first
term of the curvature energy, eq 9, of the bicontinuous
phases. Since it is an area average over a complicated
function of K*, we have to replace ∫ dA* and K* by ∑fi
and Ki, respectively. In Figure 6b, we plot the quantity
〈(Hl - c0)2〉ll2 as a function of hydrocarbon volume fraction
v for c0 ) 1/6. In contrast to 〈Hl〉ll, compare eq 12, no simple
formula exists, and it has to be calculated numerically as

Table 3. First Moments SN and Variance ∆ ) S0S2/S1
2 - 1 of the Distributions of Gaussian Curvaturea

D I-WP S F-RD C(P)

S0 3.83763 3.46250 5.41457 4.77522 3.74820
S1 -100.531 -75.4075 -251.403 -251.316 -100.992
S2 3209.46 2434.91 18514.0 21821.3 5012.37
S3 -110842 -86861.5 -1.7220 × 106 -2.29671 × 106 -286143
S4 4.00533 × 106 3.24503 × 106 1.82465 × 108 2.66794 × 108 1.81085 × 107

S5 -1.49309 × 108 -1.24566 × 108 -2.08738 × 1010 -3.27706 × 1010 -1.21507 × 109

S6 5.69880 × 109 4.86942 × 109 2.50549 × 1014 4.16686 × 1012 8.45482 × 1010

S7 -2.21675 × 1011 -1.92889 × 1011 -3.10619 × 1014 -5.42345 × 1014 -6.02391 × 1010

S8 8.75987 × 1012 7.719305 × 1012 3.941396 × 1016 7.179904 × 1016 4.363058 × 1014

∆ 0.218702 0.482666 0.586079 0.649801 0.842022
a In particular, S0 ) A* and S1 ) 2πø with A* and ø given in Table 2. If the moments for D are scaled appropriately for a change of unit

cell, the values given in ref 32 are recovered. The moments for G and P are not shown since they follow from those for D due to the Bonnet
transformation. The values for ∆ are the same for G, D, and P.

F[Φ] ) ∫ dr {(∆Φ)2 + g(Φ)(∇Φ)2 + f(Φ)} (19)

f(Φ) ) (Φ + 1)2(Φ - 1)(Φ2 + f0)

g(Φ) ) g0 + g2Φ2 (20)

〈(Hl - c0)
2〉ll

2 )

∑ifi(1 - ¥i(v

Γ)2)( ¥i(v

Γ)2

1 - ¥i(v

Γ)2
+ c0)2

∑ifi(1 - ¥i(v

Γ)2)
(21)
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Since ¥i is invariant under a Bonnet transformation,
〈(Hl - c0)2〉ll2 is the same for P, D, and G, except for a
rescaling of v with Γ. In particular, the curves reach the
same minimal values and the minima are shifted to the
right with increasing topology index Γ. Thus the structures
P, D, and G perform equally well, but at different values
of v. From Figure 6a, we see that all other structures
cannot reach this low value of frustration since they have
much broader distributions than P, D, and G (compare
Table 3). Note that the scaling with v/Γ is valid in eq 12
for all structures and in eq 21 only for those related by a
Bonnet transformation.

Except for a factor of v/c0
2, the free-energy density (9)

for r ) 0 is identical with 〈(Hl - c0)2〉ll2 (see eq 21). In
Figure 7, we show the free-energy density of all considered
phases for c0 ) 1/6, r ) 0, and κ/kBT ) 10. From the graph,
we infer the phase sequence L-G-D-P with increasing
water content; the other phases are not stable since they
cannot reach that small an amount of bending frustration
as can P, D, and G. As discussed above, eq 13 implies that
the sequence G-D-P is determined by the topology index.

Since the free-energy density for P rises again for small
v, it would be more favorable for it to coexist with excess
water. This mechanism is known as emulsification failure
in surfactant systems31 and allows the sequence to be
extended to include a P + W coexistence. The emulsifica-
tion failure can be interpreted as a Maxwell construction
of P with the pure water phase with f ) 0 at v ) 0. It
follows from eq 9 and the scaling of 〈(Hl - c0)2〉ll2 with v/Γ
that the free-energy density fb for P, D, and G can be
written in the scaling form

with a universal function Ω(x). For small r, this function
has Ω(0) ) 1, has a minimum at x = 4 c0/(1 + c0), and
diverges at x = 4. A Maxwell construction shows that
these structures always lie on a triple line, irrespective
of the values for c0, r, and κ (compare inset of Figure 7).
This means that if we calculated the whole phase diagram
with the Maxwell construction, D and P would be stable
only along a line. In the following we identify phase
transitions between G, D, and P with the intersections of
the free-energy curves, since under experimental condi-
tions, small additional contributions to the free energy
are certain to destroy the delicate free-energy balance
resulting from the Bonnet transformation and then will
lead to extended one-phase regions for D and P (or remove
one or both of them from the overall phase diagram).

In Figure 8 we use this reasoning to construct phase
diagrams as a function of v and c0 for different values of
r and κ/kBT. With increasing water concentration FW )
1 - v, we always obtain the sequence L-G-D-P-W +
P. The most stable IBCP is the gyroid structure G close
to the lamellar phase at high values of v since it has both
a narrow distribution of Gaussian curvature and the
highest topology index. At lower concentrations of v, one
finds narrow regions of stability for D and P since they
have narrow distributions, too, but increasingly lower
values of Γ. Increasing c0 shifts the loci of least frustration
to higher v as evident from Figure 6a. Decreasing κj (i.e.,
increasing r) disfavors the IBCPs and increases the
stability region for the lamellar phase, as can be seen by
comparing parts a and b of Figure 8, where r is increased
from 0.1 to 0.5, respectively. However, for c0 J r/2 there
always will be a region of stability for the IBCPs, even for
r ) 1. This stands in marked contrast to similar modeling
for ternary systems where bicontinuous cubic phases are
expected to disappear for r J 0.55.40 The explanation lies
in the fact that changing the spontaneous curvature c0 of
the monolayers amounts to changing the effective saddle-
splay modulus of the bilayer; compare eq 4. Thus,
increasing c0 can counteract the effect of making κj more
negative. The bicontinuous phases are also favored by
lowering κ without changing r, since this increases the
fluctuation effects which favor IBCPs (positive renormal-
ization of κj) and disfavor the lamellar phase (increase of

Figure 6. (a) 〈Hl〉ll ) (v/Γ)2/(4 - (v/Γ)2) as a function of
hydrocarbon volume fraction v. The straight line is c0l ) 1/6.
From right to left, the IBCPs appear in the sequence S, G, D,
I-WP, P, C(P), and F-RD. (b) 〈(Hl - c0)2〉ll2 as a function of
hydrocarbon volume fraction v with c0l ) 1/6. The IBCPs can
be identified from their sequence at the top of the figure, where
G, D, P, S, I-WP, C(P), and F-RD appear from right to left. The
straight line is (c0l)2 ) (1/6)2. Since P, D, and G are related by
a Bonnet transformation, their curves differ from each other
only by a simple rescaling of v with Γ. Therefore they reach the
same minimal values, but at different v according to their Γ
values.

Figure 7. Free energy densities as a function of hydrocarbon
volume fraction v for c0l ) 1/6, r ) 0, and κ/kBT ) 10. The solid
line on the right is fL, the other solid lines are the different fb.
The IBCPs can be identified from their sequence at the top of
the figure, where G, D, P, S, I-WP, C(P), and F-RD appear from
right to left. With decreasing v, the phases LR, G, D, and P are
stable. The lower dashed line is the Maxwell construction with
an excess water phase (emulsification failure). G, D, and P lie
on a triple line (compare inset) since they are related by a Bonnet
transformation. The right dashed line is the Maxwell construc-
tion between G and LR. Reproduced from ref 1. Copyright 2000
American Institute of Physics.

fb ) vΩ(v/Γ) (22)
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steric repulsion). This can be seen by comparing parts b
and c of Figure 8, where κ/kBT is decreased from 10 to 2,
respectively, while r is kept constant at 0.5.

VI. Breaking the Bonnet Symmetry
It is clear from our discussion in section II that all

contributions to the free energy, which can be written in
the scaling form vΩ(2l〈K〉1/2) ) vΩ(v/Γ), will preserve the
triple-line coexistence of G, D, and P. Obviously, an
interaction which introduces an additional length scale,
in addition to l and 〈K〉-1/2, is needed to break the Bonnet
symmetry and to lift the triple-line coexistence. Here we
want to discuss van der Waals interactions and chain
stretching.

The nonretarded van der Waals interaction at distance
d ) |r1 - r2| has the general form

where AH is the Hamacker constant and F1 and F2 are the
number densities of atoms in the two interacting bodies.
The total interaction energybetween twocolloidalparticles
of volumes V1 and V2 is then given by

Unfortunately, the energy density of the van der Waals
interaction cannot be calculated easily in a cubic bicon-
tinuous phase. However, it is clear from eq 24 that it is
the embedding of the TPMS in three-dimensional space,
which is important for the van der Waals energy. Distances
between different parts of the bilayer are not determined

uniquely by the K distribution, which describes the
internal geometry of a surface. This is evidenced by the
self-intersections of the parallel surfaces for v J 0.8, which
do not affect any of the considerations of the curvature
energy described in the previous sections but would give
a divergent contribution to the van der Waals energy.
Thus, we conclude that the van der Waals interaction
must break the Bonnet symmetry. We illustrate this point
in Appendix A, where we approximate the TPMS by a
face-center cubic (fcc) array of spherical shells.

To estimate the frustration energy due to chain stretch-
ing, it has been suggested in ref 32 to calculate the variance
of the distance between constant-mean-curvature com-
panions of a given TPMS. For the D surface, the variance
∆L ) 〈(L - l)2〉 has been shown32 to be almost independent
of v, with

and RD ) 0.000 35, where eq 6 has been employed in the
second equality. Similar results can be expected for G and
P, with prefactors RG and RP, respectively. We introduce
a function R(A*), which is defined such that R(AP*) ) RP,
R(AD*) ) RD, and R(AG*) ) RG for the three values of A*
for the P, D, and G phases. Then, the stretching-energy
density has the scaling form

where Es is the stretching energy from eq 2 and eq 25 has
been used for ∆L. Note that this energy density has been
made dimensionless with the same factor as the curvature
energy in section II; i.e., it is normalized to the free-energy
density of the lamellar phase (compare eq 7).

These results make the scaling argument of section II
more precise. Equation 25 shows very clearly that the
lattice constant a appears as a new length scale and that
the Bonnet symmetry is broken in general by the stretch-
ing contributions. It is interesting to consider the possible
functional dependencies of R(A*) in more detail. First, if
R(A*)A*2 is a monotonically increasing (decreasing) func-
tion of A*, then P is stabilized (destabilized) by chain
stretching due to its small value of A*, while D is disfavored
(favored). In the case of increasing R(A*)A*2, D would not
appear in the phase diagram, while in the case of
decreasing R(A*)A*2, P cannot be present. Second, if
R(A*)A*2 ) constant, the Bonnet symmetry is restored.
Finally, R(A*)A*2 can of course be a nonmonotonic function
of A*, which stabilizes the phase with the smallest value
of R(A*)A*2.

In any case, the difference between the three phases
can be expected to be small, since the prefactor RD (and
presumably also RG and RP) is very small; nevertheless,
the stretching energy might account for small differences,
such as the ones needed to produce the phase diagram of
2:1 LA/DLPC and water, which shows no triple-line
symmetry but something close to it. A more precise
statement requires the calculation of ∆L for G and P in the
framework of the CMC-model. Other estimates of the
stretching energy have been discussed in ref 21; they also
indicate a breaking of the Bonnet symmetry.

VII. Concluding Remarks
In this work, we have investigated inverse bicontinuous

cubic phases (IBCPs) in lipid-water mixtures. We sys-
tematically included all IBCPs which might be expected

Figure 8. Phase diagrams as a function of water volume
fraction FW ) 1 - v and spontaneous curvature c0 for (a) r )
0.1 and κ/kBT ) 10, (b) r ) 0.5 and κ/kBT ) 10, and (c) r ) 0.5
and κ/kBT ) 2. Two-phase coexistences are indicated by hatched
regions. Part a is reproduced from ref 1. Copyright 2000
American Institute of Physics.
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to be of physical relevance and found that only the ones
with a narrow distribution of Gaussian curvature over
the minimal midsurface are stable, i.e., P, D, and G. While
this result has been anticipated in ref 39, we were able
to prove it quantitatively for the first time by calculating
the distributions of Gaussian curvature over the minimal
midsurfaces of all relevant structures; from these we
calculated the variance ∆ of the K distributions given in
Table 3 which is the same for P, D, and Gsdue to Bonnet
transformationssand higher for all other structures.

The Bonnet transformation also implies that the free-
energy densities for P, D, and G have the scaling form
fb ) vΩ(v/Γ) with hydrocarbon volume fraction v and
topology index Γ. The topology index is a dimensionless
inverse Euler characteristic which is independent of
scaling and choice of unit cell; the higher its value, the
less porous the structure. Since it is highest for the gyroid
structure G, it has the largest region of stability. D and
P have progressively lower values for Γ and have therefore
smaller regions of stability at lower values for v.

We also used the concept of the emulsification failure
(which is well established in surfactant science) to explain
the stability of IBCPs in excess water. A Maxwell
construction with the excess phase shows that P, D, G,
and excess water lie on a triple line for all values of c0 and
r as a consequence of the Bonnet transformation. This
“Bonnet symmetry” should not be interpreted as a
degeneracy between G, D, and P, since their different
topologies ensure that their regions of stability are
arranged according to their respective values of the
topology index. It should be noted that the free energy per
unit area (rather than per unit volume) has the scaling
form Ω(v/Γ); this might be interpreted as some kind of
degeneracy (compare refs 21 and 39), since now all three
structures attain the same minimal values.

Ourresultsagreenicelywithexperimentalobservations.
At fixed temperature, it is always the sequence G-D-P
which is observed with increasing water content, with G
having the largest region of stability and only D or P
coexisting with excess water.23 For example, for monoolein
and water at 40 °C, with increasing water concentration
the sequence L-G-D has been found, where G has the
largest region of stability and D coexists with excess
water.23 Our phase diagram for r ) 0.1 and κ/kBT ) 10
(Figure 8a) agrees particularly well with the one for 2:1
LA/DLPC and water21 (compare Figure 9). We do not treat
the inverse hexagonal phase, which experimentally occurs
at large v and large c0, but we showed above that IBCPs
will occur at large c0 and small v, and argued that at large
v stretching energy should become comparable to bending
energy. This, in fact, favors the inverse hexagonal phase,
whose geometry requires chain stretching.

Finally, we can discuss the role of temperature for 2:1
LA/DLPC and water by using the ansatz c0 ) b(T - Tb),
with a balanced temperature Tb and a phenomenological
constant b. Using l ) 11.4 Å, we find b ≈ 0.0011/ÅK and
Tb ≈ 0 °C. Since the chain melting temperature is known
to be Tm ) 30 °C, we conclude that the balanced
temperature Tb is well below the main transition. This
seems to be the generic case for lipid systems; it might be
related, e.g., to the anomalous swelling of PC bilayers
when the main transition is approached from above.57 It
is interesting to note that the constant b obtained here for
2:1 LA/DLPC and water is very close to the corresponding
value b ) 0.0012/ÅK for monolayer of C12E5 in ternary
microemulsions.46

In this paper, we only considered inverse bicontinuous
phases with cubic symmetry. A similar analysis for
noncubic phases should be straightforward, since here
Weierstrass representations are known for the main
structures, especially for the rhombohedral and tetragonal
variants of G, D, and P.27 However, we expect that these
phases will not be more favorable than G, D, and P for the
same reason as for the other cubic phases. To make further
progress in understanding their phase behavior, it seems
more important to investigate the different mechanisms
which might break the Bonnet symmetry between G, D,
and P. In our view, two calculations are needed now: (i)
of the van der Waals energy of G, D, and P and (ii) of the
variance of the distance distribution of a constant-mean-
curvature model of G and P.

Appendix A: Estimate of van der Waals Energy
Density

For a rough estimate of the energy density due to the
van der Waals interaction in cubic bicontinuous phase,
we use a fcc array of spherical shells of radius R, thickness
2l, and lattice constant a. Here, the lattice constant a
corresponds to the conventional unit cell and is taken to
be the same as for the corresponding bicontinuous phase,
and R is determined by the requirement of equal area A
per unit cell, so that A* ) 16 π(R/a)2. Thus we have
a/l ) 2A*/v again. The distance of closest approach between
two neighboring spheres is D ) 21/2a/2 - 2R; in order to
avoid contact between them, D > 0 is necessary, which
implies A* < 2π; this inequality is satisfied for all TPMS
studiedhere (compareTable1).For thecrystal,weconsider
the interaction between nearest-neighbor spheres only.
The van der Waals energy between two hollow spheres is
described by the Girifalco potential, which is often used
to model the van der Waals interaction between two
buckyballs C60.58 For our purpose it is sufficient to use the
Derjaguin approximation for the Girifalco potential, which
describes the leading contributions for close approach
correctly and shows that the van der Waals attraction for
two hollow spheres scales as W ∼ AHRl2/D3. We thus find
for the van der Waals energy density

This energy density has again been made dimensionless
with the same factor as the curvature energy in section
II. Its scaling shows that two ratios of length scales,

(56) Templer, R. H. Curr. Opin. Colloid Interface Sci. 1998, 3, 255-
263.

(57) Richter, F.; Finegold, L.; Rapp, G. Phys. Rev. E 1999, 59, 3483-
3491.

(58) Girifalco, L. A. J. Phys. Chem. 1992, 96, 858-861.

Figure 9. Experimental phase diagram for 2:1 lauric acid/
dilauroyl phosphatidylcholine and water as a function of water
volume fraction FW and temperature T (adapted from ref 21).
The temperature range from T ) 35 to T ) 50 °C corresponds
roughly to the range 0.18-0.26 in spontaneous curvature c0 in
the predicted phase diagram; compare Figure 8.
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R/a ∼ (A*)1/2 and a/l ∼ A*/v, determine the van der Waals
energy.

It is intersting to note that the curvature-energy density
in this model of spheres scales as

Since R/l ∼ (A*)3/2/v ∼ Γ/v (for fixed ø), eq A2 is consistent
with the scaling function (22). This indicates that our
identification of the sphere radius and lattice constant
gives a consistent approximation for both van der Waals
and bending energies.

LA0013805
fb ) v[1 - 1

c0(R/l)]2
(A2)
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