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Interfacial separation between elastic solids with randomly rough surfaces:

comparison of experiment with theory

B. Lorenz and B.N.J. Persson
IFF, FZ-Jülich, D-52425 Jülich, Germany

We study the average separation between an elastic solid and a hard solid with a nominal flat
but randomly rough surface, as a function of the squeezing pressure. We present experimental
results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road
surface. The theory shows that an effective repulse pressure act between the surfaces of the form
p ∼ exp(−u/u0), where u is the average separation between the surfaces and u0 a constant of order
the root-mean-square roughness, in good agreement with the experimental results.

1 Introduction

Contact mechanics between solid surfaces is the basis
for understanding many tribology processes[1, 2, 3, 4, 5,
6, 7] such as friction, adhesion, wear and sealing. The
two most important properties in contact mechanics are
the area of real contact and the interfacial separation
between the solid surfaces. For non-adhesive contact and
small squeezing pressure, the (projected) contact area
depends linearly on the squeezing pressure[8, 9, 10, 11].

When two elastic solids with rough surfaces are
squeezed together, the solids will in general not make con-
tact everywhere in the apparent contact area, but only at
a distribution of asperity contact spots. The separation
u(x) between the surfaces will vary in a nearly random
way with the lateral coordinates x = (x, y) in the ap-
parent contact area. When the applied squeezing pres-
sure increases, the average surface separation u = 〈u(x)〉
will decrease, but in most situations it is not possible to
squeeze the solids into perfect contact corresponding to
u = 0. We have recently developed a theory which pre-
dicts that, for randomly rough surfaces at low squeezing
pressures, p ∼ exp(−u/u0), where the reference length
u0 depends on the nature of the surface roughness but is
independent of p[1, 12]. Here we will present experimen-
tal results to test the theory predictions[13]. We study
the squeezing of a rubber block against an asphalt road
surface. This topic is also important in the context of
the air-pumping contribution to tire noise[14]. Thus the
compression and outward flow of the air between a tread
block and the road surface cavities during driving con-
tribute to tire noise, similarly to how sound is generated
during applause. A similar effect (but now involving de-
compression and inward flow of air) occur when a tread
block leave the tire-road contact area.

2 Theory

We consider the frictionless contact between an elastic
solid (elastic modulus E and Poisson ratio ν) with a flat
surface and a rigid, randomly rough surface with the sur-
face height profile z = h(x). The separation between the
average surface plane of the block and the average surface
plane of the substrate (see Fig. 1) is denoted by u with
u ≥ 0. When the applied squeezing force p increases,
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FIG. 1: An elastic block squeezed against a rigid rough sub-
strate. The separation between the average plane of the sub-
strate and the average plane of the lower surface of the block
is denoted by u. Elastic energy is stored in the block in the
vicinity of the asperity contact regions.

the separation between the surfaces at the interface will
decrease, and we can consider p = p(u) as a function
of u. The elastic energy Uel(u) stored in the substrate
asperity–elastic block contact regions must be equal to
the work done by the external pressure p in displacing the
lower surface of the block towards the substrate. Thus,

p(u) = −
1

A0

dUel

du
, (1)

where A0 is the nominal contact area. Eq. (1) is
exact[12, 15]. Theory shows that for low squeezing pres-
sure, the area of real contact A varies linearly with the
squeezing force pA0, and that the interfacial stress dis-
tribution, and the size-distribution of contact spots, are
independent of the squeezing pressure[16]. That is, with
increasing p existing contact areas grow and new con-
tact areas form in such a way that in the thermody-
namic limit (infinite-sized system) the quantities referred
to above remain unchanged. It follows immediately that
for small load the elastic energy stored in the asperity

contact region will increase linearly with the load, i.e.,
Uel(u) = u0A0p(u), where u0 is a characteristic length



which depends on the surface roughness (see below) but
is independent of the squeezing pressure p. Thus, for
small pressures (1) takes the form

p(u) = −u0

dp

du

or[17]

p(u) ∼ e−u/u0 . (2)

To quantitatively derive the relation p(u) we need an
analytical expression for the asperity induced elastic en-
ergy. Within the contact mechanics approach of Persson
we have[16, 18, 19]

Uel ≈ A0E
∗
π

2

∫ q1

q0

dq q2P (q, p)C(q), (3)

where E∗ = E/(1− ν2) and where P (q, p) = A(ζ)/A0 is
the relative contact area when the interface is studied at
the magnification ζ = q/q0, which depends on the applied
pressure p. The surface roughness power spectrum[16]

C(q) =
1

(2π)2

∫

d2x〈h(xh(0)〉e−iq·x,

where 〈..〉 stands for ensemble average. Note that for
complete contact P = 1 and in this limit (3) is exact.
For self affine fractal surfaces the prediction of the con-
tact mechanics theory of Persson has been compared to
numerical simulations[19, 20]. The numerical studies in-
dicate that as the fractal dimension of the surface ap-
proaches 2 the Persson theory may become exact, while
a small difference between theory and simulations are
observed for larger fractal dimension[21]. Below we will
compare the theory predictions to experimental data for
an asphalt road surface which is fractal-like with the frac-
tal dimension Df ≈ 2. We find nearly perfect agreement
between theory and experiment (see below), supporting
the picture gained before based on numerical simulations.
Substituting (3) in (1) gives for small squeezing

pressures[12]:

p = βE∗e−u/u0 (4)

For self affine fractal surfaces, the length u0 and the pa-
rameter β depend on the Hurst exponent H and on q0
and q1. Most surfaces which are self affine fractal have
the Hurst exponent H > 0.5 (or the fractal dimension
Df < 2.5). For such surfaces u0 and β are nearly inde-
pendent of the highest surface roughness wavevector, q1,
included in the analysis. For the substrate surface stud-
ied below we obtain from the measured surface roughness
power spectrum (see Fig. 7) u0 = 0.30 mm and β = 0.59.
Note that u0 is of order the root-mean-square roughness
amplitude (hrms ≈ 0.29 mm in the present case, see be-
low).
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FIG. 2: A rubber block between two flat and rigid solid plates.
(a) Undeformed state. (b) Squeezed block assuming no slip
(i.e., high enough static friction) at the rubber-plate inter-
faces. (c) Squeezed block assuming perfect slip (i.e., no fric-
tion) at the rubber-plate interfaces.
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FIG. 3: A rubber block in contact with a rigid, randomly
rough substrate. Left: no applied load. Right: The rubber
block is squeezed against the substrate with the force F . The
upper and the (average position of) the lower surface of the
rubber block moves downwards by the distances s and w,
respectively. We assume perfect interfacial slip (no friction).

Consider a rubber block (elastic modulus E) with a
flat surface (area A0) and the thickness d. We will study
both dry and lubricated interfaces (see Fig. 2) resulting
in no slip and perfect slip at the two rubber-confining
wall interfaces. If the block is squeezed against a rigid,
randomly rough counter surface, the upper surface of the
rubber block will move downwards by the distance s (see
Fig. 3), which is the sum of a uniform compression of the
rubber block, dσ/E, and a movement (or penetration) w
of the average position of the lower surface of the rubber
block into the valleys or cavities of the countersurface:

s = w + dσ/E (5)

If u denote the average separation between the block and
the substrate (so that u = 0 correspond to perfect con-
tact) then

w = hmax − u (6)

where we have assumed that the initial position of the
lower surface of the block correspond to the separation
where the block just makes contact with the highest sub-
strate asperity (as in Fig. 3, left), which is located a
distance hmax above the average substrate surface plane.
Using (4) we get

log(σ/E) = log(4β/3)− u/u0 (7)

where σ = F/A0 the squeezing pressure. Here we have
used that E∗/E = 1/(1 − ν2) ≈ 4/3 since for rubber



ν ≈ 1/2. Combining (5) and (6) gives

u = hmax − s+ dσ/E

Substituting this in (7) gives

log
( σ

E

)

= log

(

4β

3

)

−
1

u0

(

hmax − s+ d
σ

E

)

or

log
( σ

E

)

= B +
1

u0

(

s− d
σ

E

)

(8)

where B = log(4β/3)− hmax/u0.
For no-slip boundary condition, Eq. (5) is replaced by

s = w + dσ/E′

where the effective modulus E′ > E. Thus, in this case
(8) takes the form

log
( σ

E′

)

= B′ +
1

u0

(

s− d
σ

E′

)

(9)

where B′ = log(4βE/3E′)− hmax/u0.

3 Experimental

To test the theory presented above, we have performed
the experiment indicated in Fig. 3. A rubber block with
a flat surface was squeezed against an asphalt road sur-
face. The displacement s of the upper surface of the
rubber block was changed in steps of 0.05 mm, and the
force F was measured. For the experiment we used a
test stand produced by SAUTER GmbH (Albstadt, Ger-
many), normally used to measure spring constants. Us-
ing this test stand, we are able to measure forces up to
500 N, and displacement with the resolution 0.01 mm.
The rubber block was made from a silicone elastomer

(PDMS). The PDMS samples were prepared using a two-
component kit (Sylgard 184) purchased from Dow Corn-
ing (Midland, MI). This kit consists of a base (vinyl-
terminated polydimethylsiloxane) and a curing agent
(methylhydrosiloxane-dimethylsiloxane copolymer) with
a suitable catalyst. From these two components we pre-
pared a mixture of 10:1 (base/cross linker) in weight. The
mixture was degassed to remove the trapped air induced
by stirring from the mixing process and then poured into
cylindric casts (diameterD = 3 cm and height d = 1 cm).
The bottom of these casts were made from glass to ob-
tain smooth surfaces (negligible roughness). The samples
were cured in an oven at 80 ◦C for over 12 hours.
The road surface used in this experiment was provided

by Pirelli (Italian tire manufacturer). The topography
was measured with contact-less optical methods using a
chromatic sensor with two different optics produced by
Fries Research & Technology GmbH (Bergisch Gladbach,
Germany). To identify the elastic modulus E, the PDMS
sample was first squeezed against a smooth substrate in
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FIG. 4: The stress σ (in units of the elastic modulus E) as
a function of the strain s/d, where s is the displacement of
the upper surface and d the thickness of the block. In the
calculation we used E = 2.3 MPa. For a PDMS rubber block
confined between two smooth lubricated (wet) surfaces.

a compression test. We measured the force F over the
displacement s for two different cases. First there was
no lubrication used and the PDMS sample deformed lat-
erally at the force-free area as shown in Fig. 2(b), be-
cause no slip occurred at the contact areas. Second we
lubricated the contact areas to obtain perfect slip at the
interfaces (see Fig. 2(c)). We used polyfluoroalkylsilox-
ane (PFAS), a fluorinated silicone oil supplied by ABCR
GmbH & Co. KG (Karlsruhe, Germany). Because of its
high viscosity (η = 1000 cSt), the fluid is an excellent
lubricant also under extreme pressure applications and
should therefore not easily be squeezed out of the con-
tact area. Also it does not react (or interdiffuse) with
the PDMS elastomer.

4 Results

Consider first flat surfaces. In Fig. 4 we show the
measured relation between the stress and the strain for
lubricated surfaces (so that the shear stress vanish on
the boundaries). If the stress is normalized with E =
2.3 MPa a nearly strait line with the slope 1 will result
so that the relation σ = Es/d holds. The elastic modu-
lus E = 2.3 MPa is consistent with the elastic modulus
reported in the literature for similar silicon rubbers[22].

We have also performed experiments for dry surfaces.
In this case no (or negligible) slip occur at the inter-
face with the confining walls, and visual inspection of
the system showed that the rubber bulge laterally at the
force-free area (see Fig. 2(b)). We still expect a linear
(or near linear) relation between stress and strain but the
effective elastic modulus E′ is larger than for lubricated
interfaces. Thus, the effective elastic modulus deduced
from the experimental data (see Fig. 5) E′ ≈ 4.2 MPa
is about 80% larger than for the lubricated interface. To
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FIG. 5: The stress σ (in units of the elastic modulus E′) as
a function of the strain s/d, where s is the displacement of
the upper surface and d the thickness of the block. In the
calculation we used the effective modulus E′ = 4.2 MPa. For
a PDMS rubber block confined between smooth dry surfaces.
The two experimental curves corresponds to increasing and
decreasing the strain.
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FIG. 6: The stress σ (in units of the elastic modulus E′) as
a function of the strain s/d, where s is the displacement of
the upper surface and d the thickness of the block. In the
calculation we used the effective modulus E′ = 2.9 MPa. For
a PDMS rubber block confined between one lubricated (wet)
surface and one dry surface.

check the measuring system for hysteresis effects, some
of the experiments were performed bidirectional. The re-
sults are shown in Fig. 5 where the strain was increased
and after that slowly decreased again. Negligible hystere-
sis occur, as expected because of the low glass transition
temperature of PDMS.

The increase in the effective elastic modulus in com-
pression, from 2.3 MPa to 4.2 MPa, when going from slip
to no-slip boundary condition, is consistent with the pre-
diction of the Lindley equation[23], which in the present
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FIG. 7: The surface roughness power spectrum C, as a func-
tion of the wavevector q (log-log scale), for an asphalt road
surface. The strait green line has the slope −4, corresponding
to the Hurst exponent H = 1 (fractal dimension Df = 2).

case takes the form

E′ ≈ E
(

1 + 1.4S2
)

For a cylinder the shape factor S = R/2d. In the present
case E = 2.3 MPa and S = 0.75 giving E′ = 4.1 MPa
which agree very well with the measured value (4.2 MPa).
We have also studied the case where one surface is

lubricated and the other dry. In this case the the rub-
ber will displace laterally in an assymetric way (as in
Fig. 10(b)) and the measured effective elastic mod-
ulus E′ = 2.9 MPa (see Fig. 6), is slightly smaller
than the the average of the effective E-modulus obtained
assuming no-slip and complete slip on both surfaces:
(2.3 + 4.2)/2 MPa ≈ 3.3 MPa.
We will now present experimental results for a rub-

ber block squeezed against an asphalt road surface. The
surface roughness power spectrum of the road surface is
shown in Fig. 7. The surface has the root-mean-square
roughness hrms ≈ 0.29 mm, and for the wave vector
q > q0 ≈ 2500 m−1 it is (on a log-log scale) well ap-
proximated by a strait line with the slope corresponding
to a self-affine fractal surface with the fractal dimension
Df = 2. For q < q0, C(q) is approximately constant; we
refer to q0 as the roll-off wavevector.
In Fig. 8 we show the natural logarithm of the squeez-

ing pressure (divided by the effective elastic modulus) as
a function of s − dσ/E′, where s is the displacement of
the upper surface of the rubber block relative to the sub-
strate, and where d is the thickness of the rubber block.
In the calculation we used the effective elastic modulus
E′ = 4.8 MPa and B′ = −6.85. The value of B′ has been
calculated using (9) (using the measured hmax) so that
the only fitting parameter is the effective elastic modulus
E′, which however agree rather well with the measure-
ments for flat surfaces (E′ = 4.2 MPa).
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FIG. 8: The natural logarithm of the squeezing pressure
(divided by the effective elastic modulus) as a function of
s − dσ/E′, where s is the displacement of the upper surface
of the rubber block relative to the substrate, and where d is
the thickness of the rubber block. In the calculation we used
the effective elastic modulus E′ = 4.8 MPa and B′ = −6.85.
For dry contact.
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FIG. 9: The natural logarithm of the squeezing pressure
(divided by the effective elastic modulus) as a function of
s − dσ/E′, where s is the displacement of the upper surface
of the rubber block relative to the substrate, and where d is
the thickness of the rubber block. For lubricated (wet) con-
tact. In the calculation we used the effective elastic modulus
E′ = 3.4 MPa and B′ = −6.5.

In Fig. 9 we show the same as in Fig. 8 but now
for lubricated surfaces. In the calculation we used the
effective elastic modulus E′ = 3.4 MPa and B′ = −6.50.
Note that this value for B′ is slightly smaller than for dry
contacts. The difference ∆B′ = −6.50− (−6.85) = 0.35
just reflect the difference in the effective E-modulus since
according to (9) ∆B′ = log[E′(dry)/E′(lubricated)] =
log(4.8/3.4) ≈ 0.35. The E′ value is larger than the
E-modulus measured for flat lubricated surfaces (E =
2.3 MPa), but this can be understood as follows.

Visual inspection of the contact between the rubber
cylinder and the two confining walls shows that, as ex-
pected from above, the rubber block slip against the top
(flat) steel surface, while no slip (or only very limited slip)
occur against the rough substrate surface, see Fig. 10(b).
This is consistent with the fact that the observed elastic
modulus is larger than E = 2.3 MPa, as obtained above
when complete slip occur at both (lubricated) surfaces.
In fact, the observed effective E-modulus (3.4 MPa) is
rather close to the value 2.9 MPa measured for smooth
surfaces when slip occur at one surface and no slip at
the other surface. The fact that no (or very small) slip
occur at the interface between the rubber and the rough
substrate surface may be due to at least two facts:

1) The pressure in the asperity contact regions are
much higher than the average pressure, and the asperity
contact regions much smaller than the nominal contact
area, resulting in much faster squeeze-out of the lubri-
cant oil from the asperity contact regions, as compared
to the case of flat surfaces, and consequently to higher
friction in the contact regions.

2) The substrate surface roughness on different length
scales contribute to the friction during slip because of
the viscoelastic deformations of the rubber on different
length scales. However, since for silicon rubber viscoelas-
tic dissipation only occur at very high frequencies, it is
likely that this effect is small in the present case.

The measured E′-values for rough surfaces (4.8 MPa
and 3.4 MPa) are roughly 14% larger than for smooth
surfaces (4.2 MPa and 2.9 MPa), as obtained assuming
no-slip on the confining surfaces in one case, and slip
on only one of the confining surfaces in the other case.
The origin of this (small) difference in effective elastic
modulus is not known to us.

Finally, we note that for s − dσ/E′ < 0.6 mm the ex-
perimental curve in Fig. 9 drops of faster with decreas-
ing interfacial separation than predicted by the theory.
(The same effect can also be seen in Fig. 8 and has also
been observed in molecular dynamics calculations[15].)
This is a finite size effect: The theory is for an infi-
nite system which has (arbitrary many) arbitrary high
asperities, and contact between the two solids will occur
for arbitrary large surface separation, and the relation
p ∼ exp(−u/u0) holds for arbitrary large u. On the
other hand a finite system has asperities with height be-
low some finite length hmax, and for u > hmax no contact
occur between the solids and p = 0.

5 Summary and conclusion

We have presented a combined experimental-
theoretical study of the contact between a rigid solid
with a randomly rough surface and an elastic block with
a flat surface. The interfacial separation as a function of
the squeezing pressure has been derived theoretically and
has been compared to the experimental results. We find
nearly perfect agreement between theory and experimen-
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FIG. 10: A rubber block squeezed between a rigid solid plate
and a rigid randomly rough substrate. (a) Dry surfaces and
(b) lubricated surfaces.

tal data for an asphalt road surface. We conclude that
for non-adhesive interaction and small applied pressure,
p ∼ exp(−u/u0), where p is the squeezing pressure and
u the average interfacial separation, and u0 a constant of
order the root-mean-square roughness of the combined
surface profile. In addition, the experimental results
indicate that for surfaces with fractal-like roughness
profiles the Persson contact mechanics theory may be
exact for the fractal dimension Df = 2. We plan to
extend the study above to surfaces with other fractal
dimension to test the theory in more general cases. The
presented results may be of great importance for, e.g.,
heat transfer, lubrication, sealing, optical interference,
and tire noise related to air-pumping.
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