001     7118
005     20230426083014.0
024 7 _ |a 10.1103/PhysRevB.80.205418
|2 DOI
024 7 _ |a WOS:000272311400104
|2 WOS
024 7 _ |a 2128/11015
|2 Handle
037 _ _ |a PreJuSER-7118
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Moras, P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Influence of the substrate bands on the sp-levels topology of Ag films on Ge(111)
260 _ _ |a College Park, Md.
|b APS
|c 2009
300 _ _ |a 205418
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|y 20
|v 80
500 _ _ |a We acknowledge partial financial support through the EUROCORES SANMAG project of the European Science Foundation.
520 _ _ |a Angle-resolved photoemission spectroscopy and first-principles calculations were employed to analyze unusual features in the electronic structure of ultrathin Ag films grown on Ge(111). The Ag sp-derived quantum well states exhibit hexagonal-like constant energy contours with different in-plane orientations near the center of the surface Brillouin zone, in striking contrast to the expectations for a free-standing Ag(111) layer. The experimental observations are explained by taking into account the effects of hybridization of the Ag states with the star-like shaped Ge band edges on constant energy planes.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
542 _ _ |i 2009-11-19
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Topwal, D.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Sheverdyaeva, P.M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Ferrari, L.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Fujii, J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Bihlmayer, G.
|b 5
|u FZJ
|0 P:(DE-Juel1)130545
700 1 _ |a Blügel, S.
|b 6
|u FZJ
|0 P:(DE-Juel1)130548
700 1 _ |a Carbone, C.
|b 7
|0 P:(DE-HGF)0
773 1 8 |a 10.1103/physrevb.80.205418
|b American Physical Society (APS)
|d 2009-11-19
|n 20
|p 205418
|3 journal-article
|2 Crossref
|t Physical Review B
|v 80
|y 2009
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.80.205418
|g Vol. 80, p. 205418
|p 205418
|n 20
|q 80<205418
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 80
|y 2009
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.80.205418
856 4 _ |u https://juser.fz-juelich.de/record/7118/files/PhysRevB.80.205418.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/7118/files/PhysRevB.80.205418.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/7118/files/PhysRevB.80.205418.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/7118/files/PhysRevB.80.205418.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/7118/files/PhysRevB.80.205418.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:7118
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2009
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)115644
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB881
981 _ _ |a I:(DE-Juel1)VDB1346
999 C 5 |a 10.1016/S0167-5729(00)00006-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.69.844
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.47.1540
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.156801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.126401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.073407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.085327
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.216804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.245407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.075426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.153406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.036802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.216803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.206802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.035443
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1763212
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.42.5433
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/11/10/013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1132941
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21