000000722 001__ 722
000000722 005__ 20200801122057.0
000000722 0247_ $$2DOI$$a10.1016/j.cpc.2008.09.010
000000722 0247_ $$2WOS$$aWOS:000263448600006
000000722 0247_ $$2Handle$$a2128/25421
000000722 037__ $$aPreJuSER-722
000000722 041__ $$aeng
000000722 082__ $$a004
000000722 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000000722 084__ $$2WoS$$aPhysics, Mathematical
000000722 1001_ $$0P:(DE-HGF)0$$aCundy, N.$$b0
000000722 245__ $$aTopological tunnelling with dynamical overlap fermions
000000722 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2009
000000722 300__ $$a201 - 208
000000722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000722 3367_ $$2DataCite$$aOutput Types/Journal article
000000722 3367_ $$00$$2EndNote$$aJournal Article
000000722 3367_ $$2BibTeX$$aARTICLE
000000722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000722 3367_ $$2DRIVER$$aarticle
000000722 440_0 $$01439$$aComputer Physics Communications$$v180$$x0010-4655$$y2
000000722 500__ $$aCalculations were performed on the JUBL and Cray XD-1 computers at The Julich Supercomputing Center (JSC), at the Forschentrum Julich, Germany. N.C. is grateful for the support of grant 930183 from the EU RP-6 "Hadron Physics" project, from the DFG "Gitter-Hadronen Phanomenologie" project, number 458/14-4 and EU grant MC-EIF-CT-2004-506078.
000000722 520__ $$aTunnelling between different topological sectors with dynamical chiral fermions is difficult because of a poor mass scaling of the pseudo-fermion estimate of the determinant. For small fermion masses it is virtually impossible using standard methods. However, by projecting out the small Wilson eigenvectors from the overlap operator. and treating the correction determinant exactly, we can significantly increase the rate of topological sector tunnelling and reduce substantially the auto-correlation time. We present and compare a number of different approaches, and advocate a method which allows topological tunnelling even at low mass with little addition to the computational cost. (C) 2008 Elsevier B.V. All rights reserved.
000000722 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000000722 588__ $$aDataset connected to Web of Science
000000722 65320 $$2Author$$aHybrid Monte Carlo
000000722 65320 $$2Author$$aChiral fermions
000000722 65320 $$2Author$$aLattice QCD
000000722 650_7 $$2WoSType$$aJ
000000722 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b1$$uFZJ
000000722 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b2$$uFZJ
000000722 7001_ $$0P:(DE-HGF)0$$aSchäfer, A.$$b3
000000722 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2008.09.010$$gVol. 180, p. 201 - 208$$p201 - 208$$q180<201 - 208$$tComputer physics communications$$v180$$x0010-4655$$y2009
000000722 8567_ $$uhttp://dx.doi.org/10.1016/j.cpc.2008.09.010
000000722 8564_ $$uhttps://juser.fz-juelich.de/record/722/files/0803.0294.pdf$$yOpenAccess
000000722 8564_ $$uhttps://juser.fz-juelich.de/record/722/files/0803.0294.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000000722 909CO $$ooai:juser.fz-juelich.de:722$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000000722 9141_ $$y2009
000000722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000000722 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000722 9131_ $$0G:(DE-Juel1)FUEK411$$aDE-HGF$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000000722 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000000722 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x1
000000722 970__ $$aVDB:(DE-Juel1)101369
000000722 981__ $$aI:(DE-Juel1)VDB1346
000000722 980__ $$aVDB
000000722 980__ $$aConvertedRecord
000000722 980__ $$ajournal
000000722 980__ $$aI:(DE-Juel1)JSC-20090406
000000722 980__ $$aI:(DE-82)080012_20140620
000000722 980__ $$aUNRESTRICTED
000000722 9801_ $$aFullTexts