001     722
005     20200801122057.0
024 7 _ |a 10.1016/j.cpc.2008.09.010
|2 DOI
024 7 _ |a WOS:000263448600006
|2 WOS
024 7 _ |a 2128/25421
|2 Handle
037 _ _ |a PreJuSER-722
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |0 P:(DE-HGF)0
|a Cundy, N.
|b 0
245 _ _ |a Topological tunnelling with dynamical overlap fermions
260 _ _ |a Amsterdam
|b North Holland Publ. Co.
|c 2009
300 _ _ |a 201 - 208
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 1439
|a Computer Physics Communications
|v 180
|x 0010-4655
|y 2
500 _ _ |a Calculations were performed on the JUBL and Cray XD-1 computers at The Julich Supercomputing Center (JSC), at the Forschentrum Julich, Germany. N.C. is grateful for the support of grant 930183 from the EU RP-6 "Hadron Physics" project, from the DFG "Gitter-Hadronen Phanomenologie" project, number 458/14-4 and EU grant MC-EIF-CT-2004-506078.
520 _ _ |a Tunnelling between different topological sectors with dynamical chiral fermions is difficult because of a poor mass scaling of the pseudo-fermion estimate of the determinant. For small fermion masses it is virtually impossible using standard methods. However, by projecting out the small Wilson eigenvectors from the overlap operator. and treating the correction determinant exactly, we can significantly increase the rate of topological sector tunnelling and reduce substantially the auto-correlation time. We present and compare a number of different approaches, and advocate a method which allows topological tunnelling even at low mass with little addition to the computational cost. (C) 2008 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|a Scientific Computing
|c P41
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Hybrid Monte Carlo
653 2 0 |2 Author
|a Chiral fermions
653 2 0 |2 Author
|a Lattice QCD
700 1 _ |0 P:(DE-Juel1)132171
|a Krieg, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)132179
|a Lippert, T.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schäfer, A.
|b 3
773 _ _ |0 PERI:(DE-600)1466511-6
|a 10.1016/j.cpc.2008.09.010
|g Vol. 180, p. 201 - 208
|p 201 - 208
|q 180<201 - 208
|t Computer physics communications
|v 180
|x 0010-4655
|y 2009
856 7 _ |u http://dx.doi.org/10.1016/j.cpc.2008.09.010
856 4 _ |u https://juser.fz-juelich.de/record/722/files/0803.0294.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/722/files/0803.0294.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:722
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK411
|a DE-HGF
|b Schlüsseltechnologien
|k P41
|l Supercomputing
|v Scientific Computing
|x 0
914 1 _ |y 2009
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Centre
|g JSC
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)101369
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21