001 | 722 | ||
005 | 20200801122057.0 | ||
024 | 7 | _ | |a 10.1016/j.cpc.2008.09.010 |2 DOI |
024 | 7 | _ | |a WOS:000263448600006 |2 WOS |
024 | 7 | _ | |a 2128/25421 |2 Handle |
037 | _ | _ | |a PreJuSER-722 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 004 |
084 | _ | _ | |2 WoS |a Computer Science, Interdisciplinary Applications |
084 | _ | _ | |2 WoS |a Physics, Mathematical |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Cundy, N. |b 0 |
245 | _ | _ | |a Topological tunnelling with dynamical overlap fermions |
260 | _ | _ | |a Amsterdam |b North Holland Publ. Co. |c 2009 |
300 | _ | _ | |a 201 - 208 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 1439 |a Computer Physics Communications |v 180 |x 0010-4655 |y 2 |
500 | _ | _ | |a Calculations were performed on the JUBL and Cray XD-1 computers at The Julich Supercomputing Center (JSC), at the Forschentrum Julich, Germany. N.C. is grateful for the support of grant 930183 from the EU RP-6 "Hadron Physics" project, from the DFG "Gitter-Hadronen Phanomenologie" project, number 458/14-4 and EU grant MC-EIF-CT-2004-506078. |
520 | _ | _ | |a Tunnelling between different topological sectors with dynamical chiral fermions is difficult because of a poor mass scaling of the pseudo-fermion estimate of the determinant. For small fermion masses it is virtually impossible using standard methods. However, by projecting out the small Wilson eigenvectors from the overlap operator. and treating the correction determinant exactly, we can significantly increase the rate of topological sector tunnelling and reduce substantially the auto-correlation time. We present and compare a number of different approaches, and advocate a method which allows topological tunnelling even at low mass with little addition to the computational cost. (C) 2008 Elsevier B.V. All rights reserved. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK411 |2 G:(DE-HGF) |a Scientific Computing |c P41 |x 0 |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
653 | 2 | 0 | |2 Author |a Hybrid Monte Carlo |
653 | 2 | 0 | |2 Author |a Chiral fermions |
653 | 2 | 0 | |2 Author |a Lattice QCD |
700 | 1 | _ | |0 P:(DE-Juel1)132171 |a Krieg, S. |b 1 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)132179 |a Lippert, T. |b 2 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schäfer, A. |b 3 |
773 | _ | _ | |0 PERI:(DE-600)1466511-6 |a 10.1016/j.cpc.2008.09.010 |g Vol. 180, p. 201 - 208 |p 201 - 208 |q 180<201 - 208 |t Computer physics communications |v 180 |x 0010-4655 |y 2009 |
856 | 7 | _ | |u http://dx.doi.org/10.1016/j.cpc.2008.09.010 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/722/files/0803.0294.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/722/files/0803.0294.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:722 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK411 |a DE-HGF |b Schlüsseltechnologien |k P41 |l Supercomputing |v Scientific Computing |x 0 |
914 | 1 | _ | |y 2009 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Centre |g JSC |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l Jülich Aachen Research Alliance - High-Performance Computing |g JARA |x 1 |
970 | _ | _ | |a VDB:(DE-Juel1)101369 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)VDB1346 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|