000007547 001__ 7547 000007547 005__ 20210129210434.0 000007547 0247_ $$2DOI$$a10.1016/j.nuclphysb.2009.12.024 000007547 0247_ $$2WOS$$aWOS:000274945800008 000007547 0247_ $$2Handle$$a2128/21259 000007547 037__ $$aPreJuSER-7547 000007547 041__ $$aeng 000007547 082__ $$a530 000007547 084__ $$2WoS$$aPhysics, Particles & Fields 000007547 1001_ $$0P:(DE-HGF)0$$aJanke, W.$$b0 000007547 245__ $$aCritical loop gases and the worm algorithm 000007547 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2010 000007547 300__ $$a573 - 599 000007547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000007547 3367_ $$2DataCite$$aOutput Types/Journal article 000007547 3367_ $$00$$2EndNote$$aJournal Article 000007547 3367_ $$2BibTeX$$aARTICLE 000007547 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000007547 3367_ $$2DRIVER$$aarticle 000007547 440_0 $$04647$$aNuclear Physics B$$v829$$x0550-3213$$y3 000007547 500__ $$aWork supported in part by the Deutsche Forschungsgemeinschaft (DFG) under grant No. JA483/23-2 and the EU RTN-Network 'ENRAGE': "Random Geometry and Random Matrices: From Quantum Gravity to Econophysics" under grant No. MRTN-CT-2004-005616. 000007547 520__ $$aThe loop gas approach to lattice field theory provides an alternative, geometrical description in terms of fluctuating loops. Statistical ensembles of random loops can be efficiently generated by Monte Carlo simulations using the worm update algorithm. In this paper, concepts from percolation theory and the theory of self-avoiding random walks are used to describe estimators of physical observables that utilize the nature of the worm algorithm. The fractal structure of the random loops as well as their scaling properties are studied. To Support this approach, the O(1) loop model, or high-temperature series expansion of the Ising model, is simulated on a honeycomb lattice, with its known exact results providing valuable benchmarks. (C) 2009 Elsevier B.V. All rights reserved. 000007547 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0 000007547 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1 000007547 588__ $$aDataset connected to Web of Science 000007547 65320 $$2Author$$aLoop gas 000007547 65320 $$2Author$$aMonte Carlo 000007547 65320 $$2Author$$aWorm update algorithm 000007547 65320 $$2Author$$aFractal structure 000007547 65320 $$2Author$$aCritical properties 000007547 65320 $$2Author$$aDuality 000007547 650_7 $$2WoSType$$aJ 000007547 7001_ $$0P:(DE-Juel1)132210$$aNeuhaus, T.$$b1$$uFZJ 000007547 7001_ $$0P:(DE-HGF)0$$aSchakel, A.M.J.$$b2 000007547 773__ $$0PERI:(DE-600)1466567-0$$a10.1016/j.nuclphysb.2009.12.024$$gVol. 829, p. 573 - 599$$p573 - 599$$q829<573 - 599$$tNuclear physics <Amsterdam> / B$$v829$$x0550-3213$$y2010 000007547 8567_ $$uhttp://dx.doi.org/10.1016/j.nuclphysb.2009.12.024 000007547 8564_ $$uhttps://juser.fz-juelich.de/record/7547/files/0910.5231.pdf$$yOpenAccess 000007547 8564_ $$uhttps://juser.fz-juelich.de/record/7547/files/0910.5231.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000007547 909CO $$ooai:juser.fz-juelich.de:7547$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000007547 9141_ $$y2010 000007547 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000007547 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000007547 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000007547 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1 000007547 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000007547 970__ $$aVDB:(DE-Juel1)116207 000007547 980__ $$aVDB 000007547 980__ $$aConvertedRecord 000007547 980__ $$ajournal 000007547 980__ $$aI:(DE-Juel1)JSC-20090406 000007547 980__ $$aUNRESTRICTED 000007547 9801_ $$aFullTexts