001     7547
005     20210129210434.0
024 7 _ |a 10.1016/j.nuclphysb.2009.12.024
|2 DOI
024 7 _ |a WOS:000274945800008
|2 WOS
024 7 _ |a 2128/21259
|2 Handle
037 _ _ |a PreJuSER-7547
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Particles & Fields
100 1 _ |0 P:(DE-HGF)0
|a Janke, W.
|b 0
245 _ _ |a Critical loop gases and the worm algorithm
260 _ _ |a Amsterdam
|b North-Holland Publ. Co.
|c 2010
300 _ _ |a 573 - 599
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4647
|a Nuclear Physics B
|v 829
|x 0550-3213
|y 3
500 _ _ |a Work supported in part by the Deutsche Forschungsgemeinschaft (DFG) under grant No. JA483/23-2 and the EU RTN-Network 'ENRAGE': "Random Geometry and Random Matrices: From Quantum Gravity to Econophysics" under grant No. MRTN-CT-2004-005616.
520 _ _ |a The loop gas approach to lattice field theory provides an alternative, geometrical description in terms of fluctuating loops. Statistical ensembles of random loops can be efficiently generated by Monte Carlo simulations using the worm update algorithm. In this paper, concepts from percolation theory and the theory of self-avoiding random walks are used to describe estimators of physical observables that utilize the nature of the worm algorithm. The fractal structure of the random loops as well as their scaling properties are studied. To Support this approach, the O(1) loop model, or high-temperature series expansion of the Ising model, is simulated on a honeycomb lattice, with its known exact results providing valuable benchmarks. (C) 2009 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Loop gas
653 2 0 |2 Author
|a Monte Carlo
653 2 0 |2 Author
|a Worm update algorithm
653 2 0 |2 Author
|a Fractal structure
653 2 0 |2 Author
|a Critical properties
653 2 0 |2 Author
|a Duality
700 1 _ |0 P:(DE-Juel1)132210
|a Neuhaus, T.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schakel, A.M.J.
|b 2
773 _ _ |0 PERI:(DE-600)1466567-0
|a 10.1016/j.nuclphysb.2009.12.024
|g Vol. 829, p. 573 - 599
|p 573 - 599
|q 829<573 - 599
|t Nuclear physics / B
|v 829
|x 0550-3213
|y 2010
856 7 _ |u http://dx.doi.org/10.1016/j.nuclphysb.2009.12.024
856 4 _ |u https://juser.fz-juelich.de/record/7547/files/0910.5231.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/7547/files/0910.5231.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:7547
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)116207
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21