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Abstract

High accuracy motion analysis of plant leafs is of great interest for plant physiology,
e.g., estimation of plant leaf orientation, or temporal and spatial growth maps, which
are determined by divergence of 3D leaf motion. In this work a new method for plant
leaf motion estimation is presented. The model is based on 5D affine optical flow,
which allows simultaneous estimation of 3D structure, normals and 3D motion of
objects using multi camera data.
The method consists of several consecutive estimation procedures. In a first step
the affine transformation in a 5D data set, i.e., 3D image sequences (x,y,t) of a 2D
camera grid (sx,sy) is estimated within a differential framework. In this work the
differential framework, based on an optical flow model, is extended by explicitly
modeling of illumination changes.
A second estimation process yields 3D structure and 3D motion parameters from
the affine optical flow parameters. Modeling the 3D scene with local surface patches
allows to derive a matrix defining the projection of 3D structure and 3D motion onto
each camera sensor. The inverse projection matrix is used to estimate 3D structure
(depth and surface normals) and 3D motion, including translation, rotation and
acceleration from up to 24 affine optical flow parameters.
In order to stabilize the estimation process optical flow parameters are estimated
additionally separated for all cameras. A least squares estimator yields the solution
minimizing the difference between optical flow parameters and the back projection
of the 3D scene motion onto all cameras.
Experiments on synthetic data demonstrate improved accuracy and improved ro-
bustness against illumination changes compared to methods proposed in recent
literature. Moreover the new method allows estimation of additional parameters
like surface normals, rotation and acceleration. Finally, plant data acquired under
typical laboratory conditions is analyzed, showing the applicability of the method
for plant physiology.

iii



iv



Kurzfassung

Eine detaillierte Bewegungsanalyse von Pflanzenblättern ist für die Pflanzenphy-
siologie von großem Interesse, z.B. die Bestimmung der Blattwinkelstellung oder
zeitlich und räumlich hochaufgelöster Blattwachstumskarten, welche sich aus der
3-D-Bewegung eines Blattes berechnen lassen. Im Rahmen dieser Arbeit wurde eine
neue Methode zur Analyse von Pflanzenblattbewegungen entwickelt. Die Methode
basiert auf dem 5-D-affinen optischen Fluss und ermöglicht die simultane Bestim-
mung von 3-D-Struktur, Oberflächennormalen und 3-D-Bewegung eines Objektes
aus Multi-Kamerasequenzen.
Die Methode basiert auf mehreren, hintereinander ausgeführten Schätzungen. Zu-
nächst wird die affine Transformation einer Umgebung innerhalb eines 5-D-Daten-
satzes, d.h. 3-D-Bildsequenzen (x,y,t) eines 2-D-Kamera-Arrays (sx,sy), mit einem
differentiellen Ansatz nach dem Prinzip des optischen Flusses bestimmt. Das in dieser
Arbeit vorgestellte erweiterte Modell des optischen Flusses modelliert auftretende
Helligkeitsänderungen explizit und erhöht somit die Robustheit gegenüber Beleuch-
tungsänderungen.
Nach Bestimmung der 5-D-optischen Flussparameter werden die 3-D-Struktur und
die 3-D-Bewegung, basierend auf einem sogenannten Surface Patch Model, geschätzt.
Die Matrix, die die Projektion der 3-D-Struktur und der 3-D-Bewegung des Surface
Patches auf den jeweiligen Kamerasensor beschreibt, kann mit Hilfe projektiver Geo-
metrie bestimmt werden. Die Inverse dieser Projektionsmatrix ermöglicht dann die
Ermittlung von 3-D-Struktur (Tiefe und Oberflächennormalen) und 3-D-Bewegung
(Translation, Beschleunigung und Rotation) aus den bis zu 24 Parametern des affinen
optischen Flusses.
Zur Stabilisierung der Schätzung werden Parameter des optischen Flusses zusätzlich
separat in allen Kameras geschätzt. Ein Least-Squares Schätzer liefert dann die
Lösung, welche die Differenz zwischen den einzelnen Parametern des optischen Flus-
ses und der Rückprojektion der 3-D-Bewegung in die einzelnen Kameras minimiert.
Experimente mit synthetischen Daten belegen die höhere Genauigkeit und die höhere
Robustheit gegenüber Beleuchtungsänderungen im Vergleich zu bekannten Verfah-
ren aus der Literatur. Zudem ist die explizite Bestimmung zusätzlicher Parameter
wie Oberflächennormalen, Beschleunigung und Rotation möglich. Die erfolgreiche
Auswertung von unter normalen Laborbedingungen erhobenen Pflanzensequenzen
belegt die Anwendbarkeit der neuen Methode in der Pflanzenphysiologie.
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Chapter 1

Introduction

This thesis presents a new approach for estimation of 3D structure, surface slopes
and 3D motion of objects from multi-camera image sequences. In the last years
more and more applications using 3D reconstruction and/or motion estimation of
image sequences are developed. Miniaturization and increasing performance of image
processing setups including cameras and signal processing hardware as well as falling
costs, allow fast and cheap measurements from large to small scale applications.
Another important fact is that measurements are non-invasive. Image processing
applications can be found almost everywhere in daily life, starting from motion
estimation in consumer hardware such as cameras or entertainment products as
Sony’s EyeToy [66], to driver assistance systems, surveillance systems, satellite data
products, so-called web mapping service applications, like Google Street View [22],
and so on. Motion estimation in image sequences is a prerequisite of many image
processing algorithms, such as depth reconstruction, 3D motion estimation, tracking,
segmentation and coding, to name only few of them. 2D motion in image sequences
is sometimes called optical flow [26]. Several estimation frameworks have been
proposed for optical flow estimation. We may distinguish between differential, often
called optical flow based techniques and point/feature correspondence or correlation
based techniques. In this work we focus on differential frameworks, which yield high
accuracy and are developed since the early 80’s [28, 42]. There is rich literature on
optical flow estimation techniques (see e.g., [4, 26, 10, 14, 49]) and many extensions
have been developed. An overview of recent optical flow estimation algorithms is
presented in [3]. Optical flow can be used for depth reconstruction and 3D motion
estimation, depending on the images on which the optical flow is determined:

� in case of images of different cameras displaced parallel to their sensor planes
the optical flow is inversely proportional to the depth of the 3D point projected
onto the image sensor element,

� for consecutive images from one fixed camera the motion seen on the sensor is
the projection of the 3D motion in the scene, the so called Scene Flow.

1



1 Introduction

Considerable work has already been carried out on estimating 3D motion fields. Range
Flow estimation [80, 21] uses solely data from range sensors, whereas Spies et al.
[67, 69] incorporate information from both range and image sensors. Reconstruction
of Scene Flow and 3D structure from optical flow observed in several cameras has
been proposed by [81, 76, 40, 57, 31].

1.1 Motivation and Approach

In this work we focus on plant leaf motion estimation. The Institute of Chemistry
and Dynamics of the Geosphere: Phytosphere (ICG-3) at the Forschungszentrum
Jülich investigates plant leaf motion and growth in order to examine the influence
of environmental change, biotic/abiotic stresses, and light quality and quantity
on growth dynamics. For the estimation of plant leaf growth a system based on
a single camera was developed by Schmundt and Schurr [59]. There the camera
images a leaf from the top and the divergence of the calculated velocity field yields
the sought growth rate. Typical growth rates of fast growing leaves are below 3%
per hour or 0.1%/frame when a typical frame rate of 0.5 frames per minute is
assumed [78]. Therefore a suitable estimation technique has to be highly accurate.
However, any change in the distance between the camera and the plant leaf causes
a diverging optical flow field. This motion cannot be distinguished from growth of
the leaf. Therefore the leaf is fixed in order to restrict motion to the horizontal
plane. The procedure how to fix the leaf in order not to influence overall leaf growth
was thoroughly tested [63]. Nevertheless, fixing leafs influences plants and is not
appropriate for screening, i.e., high throughput measurements. In order to estimate
plant growth of freely moving plant leaves, 3D structure and motion has to be
estimated in high accuracy.

In this work we investigate three 3D motion estimation techniques, namely Scene
Flow [74], Range Flow [67] and a technique based on an affine motion model [57]
(labeled as the Affine Model). All these techniques are based on motion models,
which do not allow reliable estimation of plant motion. We extend these models and
propose a novel estimation technique incorporating advantages of all three approaches.
The novel affine optical flow-like differential model allows estimation of 3D structure
and 3D motion using image sequences of a camera grid. The model is valid for
instantaneously moving cameras observing moving surfaces. This is unlike previous
work (e.g., [41, 37, 1, 79]) where either an observed surface moves, or a camera, but
not both. The model introduced here combines motion estimation in the sequence
in camera displacement direction, i.e., disparity, and in time direction, i.e., optical
flow. It is an extension of a model first introduced by Scharr [55] and further refined
and extended in [56, 60]. It allows simultaneous local estimation of 3D motion, 3D
position and surface normals in a spatio-temporal affine optical flow-like model.

3D motion estimation is used for many different applications, i.e., driver assistance,
machine vision or tracking, to name only few of them. Obviously applications have

2
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Figure 1.1: Setup for our target application plant growth analysis. A camera grid
(a) is simulated using a single camera on a moving stage (b). From images (c) taken
from vertical view a 3D reconstruction (d) is calculated.

different demands on the estimated 3D motion field, e.g., real-time processing and
reliability are basic prerequisites for a driver assistance system, whereas accuracy in
the range of cm may be sufficient.

Although we do not aim at presenting a best method yet, we do have the target
application plant leaf growth analysis in mind when designing our experiments.
Accuracy in the range of μm is a basic requisite. Plant leaf motion is high compared
to plant leaf growth. In order to estimate growth from the divergence of plant leaf
motion these estimates have to be highly accurate and reliable. Moreover many plant
species have reflective leaf surfaces, i.e., directed illumination may cause specular
highlights. Further plants react on visible light. Nevertheless real-time processing
is not necessary, i.e., motion and growth parameter estimation can be done off-line.
In order to develop an appropriate method all these requirements have to be taken
into account. For imaging we use a single camera on an x-y-moving stage instead of
a real camera grid. This allows us to use very small baselines, much smaller than
camera dimensions. Obviously images are not taken at exactly the same point in
time, which could be accounted for in the discretization of derivative kernels applied
to the images. We neglect this effect here, because plants move slowly enough such
that time intervals between two images at the same camera position are much larger
than the overall acquisition time for all camera images representing ’one’ point in
time. Figure 1.1 shows the setup for our target application, and a rendered image of
a plant obtained with the presented model.

1.2 Thesis Outline

In this work we derive a novel model for 3D depth, slopes and 3D motion estimation.
In Chap. 2 we demonstrate the basic elements of motion estimation techniques, i.e.,
model derivation, discretization and parameter estimation. We discuss motion models
suitable for optical flow estimation and optimal filter sets for data discretization.
Several estimators are proposed and evaluated on synthetic sequences.

Chapter 3 reviews the 3D motion estimation techniques Scene Flow and Range
Flow. Furthermore the Affine Model is introduced, which is an extension of the

3



1 Introduction

multi-camera model presented by [55]. Range Flow and the Affine Model have already
been proposed for plant leaf emotion estimation, whereas Scene Flow showed high
performance in human motion estimation. We evaluate the performance of the three
models on synthetic data and on a plant leaf sequence.

None of the models yields the accuracy needed for reliable plant leaf motion
estimation. The main reason are illumination changes in the image sequences due to
motion of the leaf or the light source. Chapter 4 therefore shows an investigation of
different approaches to handle varying illumination. Combinations of prefilters and
brightness change constraints are thoroughly tested and a novel brightness change
constraint, which explicitly models brightness changes is derived.

In Chap. 5 we introduce a new motion model for the Affine Model in order
to estimate rotational motion. Furthermore we extend the model by estimating
additional affine optical flow parameters. These parameters are used to make
subsequent parameter estimation of 3D structure and 3D motion more robust. This
extension boils down to be a combination of the Affine Model and Range Flow.

Chapter 6 demonstrates how to integrate Scene Flow in the Affine Model. The
novel Affine Scene Flow Model combines advantages of all three 3D motion estimation
models and yields highest accuracies on synthetic sequences as well as on plant leaf
sequences.

Finally a concluding summary and an outlook on possible future work is given in
Chap. 7.
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Chapter 2

Parameter Estimation of Dynamic
Processes

Parameter estimation from noisy data is a basic requisite in many image and signal
processing applications, like line fitting, camera calibration, image matching, signal
reconstruction or position detection. In this work we focus on motion estimation
on image sensors. The motion seen on a 2D image sensor is called optical flow
and describes the change of a value, e.g., brightness or color, in consecutive images.
This optical flow may be used as input for subsequent processing steps including
motion detection, motion compensation, motion-based data compression, 3D scene
reconstruction, 3D motion estimation or segmentation,to name only a few of them.
In some publications [74, 40] optical flow is referred to as the projection of the 3D
motion. In fact it is only an approximation of the projected motion. Motion on
the image plane is identified by changes of a certain value, e.g., the intensity for
gray value images. Therefore optical flow in an intensity image sequence can only
be estimated in textured areas or by varying illumination. This leads to problems
for interpretation of the projected 3D motion. Horn [27] denotes several problems
when estimating optical flow, e.g., the motion of a rigid sphere. Consider a rigid
sphere without texture and homogeneous surface reflectance rotating around an axis
through its origin. With a constant illumination source, this 3D motion does not
generate optical flow, because no brightness changes are visible. If the light source
itself is moving optical flow occurs also when the illuminated object does not move.
Other problems for motion estimation are e.g., occlusion, transparent and multiple
motions, aperture problems and correspondence problems.
Figure 2.1 shows two frames of the well known synthetic Yosemite sequence

[4], which is very popular as a benchmark for motion estimation techniques. The
sequence was originally generated by Lynn Quam at SRI and shows a flight through
the Yosemite valley. The optical flow for frame 7 is depicted in Fig. 2.1c. Several
techniques have been proposed for motion estimation between consecutive frames.
Haussecker and Spies [26] distinguished two groups, namely optical flow-based and
correspondence-based techniques. The definition of optical flow-based is somewhat

5



2 Parameter Estimation of Dynamic Processes

a b c

Figure 2.1: a and b: Frames 5 and 9 of the Yosemite sequence. c: Ground truth flow
vectors for frame 7.

misleading, as optical flow is in general defined as the motion in the image, which
is estimated by both techniques. Haussecker and Spies define techniques as optical
flow-based techniques, when the relationship between the temporal variations of
image intensities or the frequency distribution in the Fourier domain is analyzed,
e.g., differential, energy-based, tensor-based and phase-based techniques. These
techniques imply compliance with the temporal sampling theorem.
In contrast to this, correspondence techniques estimate best matches of features
between two frames. These techniques can be classified into correlation methods
and feature tracking techniques. Whereas correlation techniques find the best match
based on a so called correlation window, the feature tracking techniques extract
features like borders or edges and track them over time.
Haussecker and Spies [26] present an extensive study of these two classes of 2D motion
estimation techniques. They propose that the tensor based techniques perform best
with respect to systematic error and noise sensitivity and should be used for subpixel
displacement estimation. Correspondence based techniques are less sensitive to
illumination changes and are capable of estimating long range displacements, where
standard differential techniques fail. Illumination models for differential techniques
[25, 60] and warping techniques (e.g., [13]), which address these disadvantages, have
been presented recently.
Overviews of optical flow-based approaches are given by Barron et al. [4] and
Haussecker and Spies [26]. Baker et al. [3] established a set of benchmarks and
evaluation methods for optical flow algorithms. This database is freely available
on the web together with results of the most recent optical flow-based techniques
at http://vision.middlebury.edu/flow/. A taxonomy of dense two frame stereo
correspondence based techniques was presented by Scharstein and Szeliski [58].
Benchmarks and results of these and more recent techniques are also available on
the web at http://vision.middlebury.edu/stereo/.
A complete motion estimation technique is based on an appropriate combination of
a data model, a discretization and an estimator. The result of a motion estimation
technique depends on all three parts, e.g., combining a highly accurate data model
and an estimator based on statistics not appropriate for the data, leads to reduced
accuracy of estimation results, limited by the estimator.
Optical flow estimation techniques are commonly classified into local and global

6



2.1 Model Derivation

methods. Local estimators use data exclusively from a local neighborhood and
minimize an energy function based on a local data-model, i.e., the so-called data
term1. Methods based on these models may be implemented very efficiently and
are often more robust under noise compared to global methods [19, 14]. Global
estimators incorporate a prior term on the solution that couples parameters not only
in a local neighborhood but in the whole data set [39]. In most cases this prior term
is a smoothness assumption of the solution, therefore often called smoothness term.
The prior term allows to estimate parameters also in regions where the estimation
problem is ill-posed [5], i.e., when the solution a) is not unique, b) does not exist or
c) does not depend continuously on the data. However, the prior term may include
any prior knowledge on the solution parameters.
Global and combined local/global methods are widely used in recent work and showed
high performance and accuracy [3]. A drawback of these methods is the prior term
influencing all parameters, making detailed error analysis difficult. In contrast to
this several error measurements for local methods, e.g., the structure tensor method,
have been studied intensively [35].
We briefly review differential-based estimation of optical flow. We start by deriving
flow models and the discretization of the image space. The second part of this
chapter addresses different types of local estimation techniques.

2.1 Model Derivation

Parameter estimation is a part of statistics and includes appropriate mathematical
modeling of data structures and estimation of constant parameters of this model. A
common assumption on optical flow is that the image brightness I(x, t) at a point
x = [x, y]T at time t should only change because of motion u = [ux, uy]

T. We get

I(x, t) = I(x+ uδt, t+ δt) (2.1)

with optical flow u. Assuming that δt is small we approximate I(x + uδt, t + δt)
by its Taylor expansion. Ignoring higher order terms we obtain a gradient based
formulation for the total change of intensity I(x, t) in time

dI =
(
I(x, t) + ∂I

∂x
dx + ∂I

∂y
dy + ∂I

∂t
dt

)
− I(x, t)

⇔ dI = ∂I
∂x
dx + ∂I

∂y
dy + ∂I

∂t
dt

⇔ dI
dt

= ∂I
∂x
ux +

∂I
∂y
uy +

∂I
∂t

(2.2)

with the optical flow components denoted by ux = dx /dt and uy = dy /dt . Equation
(2.2) describes brightness changes in the data due to the optical flow and is therefore
called the brightness change constraint equation (BCCE). A special case of the BCCE

1In literature also named likelihood term [51] or bones [36].
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is the brightness constancy constraint equation (in literature sometimes also called
BCCE), where intensities are assumed constant with time, i.e., dI /dt = 0. This
results in

Ixux + Iyuy + It = 0 (2.3)

with partial image derivatives Iq =
∂I
∂q

with q ∈ x, y, t. To solve for optical flow u the
flow field is modeled for neighboring image points in Sec. 2.1.1. Additional equations
then allow to solve for u.

2.1.1 Modeling of Flow Fields

In order to solve under-determined constraints like the BCCE (2.2), constraints may
be grouped together over a local neighborhood Λ. The resulting equation system
allows estimation of a constant solution vector (here: optical flow vector u). The
neighborhood Λ should be chosen as small as possible to ensure a local estimate of
optical flow u. The larger the neighborhood is, the more likely it is that the optical
flow varies in Λ, or that multiple flows occur. On the other hand, Λ should be large
enough to contain enough information to constrain the solution and be robust to
noise. In this section we parameterize the flow vector u assuming a single motion.
The most common models are

� Local constancy of u(x),

� Local smoothness of u(x), i.e., the so-called affine optical flow and

� Higher order models of u(x).

Local constancy of u(x) assumes that the flow in a certain neighborhood Λ of x
is constant. Assuming brightness constancy (cmp. (2.3)), optical flow u is then
determined by solving the overdetermined equation system⎛

⎜⎜⎜⎝
Ix,1 Iy,1 It,1
Ix,2 Iy,2 It,2
...

...
...

Ix,N Iy,N It,N

⎞
⎟⎟⎟⎠

⎛
⎝ ux

uy

1

⎞
⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ (2.4)

for neighborhood Λ with size N .
The assumption of locally constant motion is not fulfilled for most motion vector
fields or holds only for small sizes of neighborhood Λ. A more sophisticated motion
vector field model is the assumption of local smoothness. Local smoothness and local
constancy are sometimes used synonymously. But in a stricter sense local smoothness
means that within a local neighborhood Λ the optical flow field is allowed to vary
smoothly. This may be achieved e.g., by means of a Taylor series of ũ(x) in local
coordinates Δx = (x − x0, y − y0)

T =: (Δx,Δy)T around the center (x0, y0) of Λ.
This is typically called an affine model and estimation boils down to estimating a
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2.1 Model Derivation

a b c

Figure 2.2: Motion vector field transformations. a: Constant, b: stretching and c:
rotation.

larger parameter vector also containing smoothness information, which is constant
in a neighborhood. The displacement vector field v is modeled locally by

v = u+AΔx (2.5)

with a 2× 2-matrix A. (x0, y0) is the point for which a displacement vector is to be
calculated, usually the center of the neighborhood Λ. Reformulating the brightness
constancy constraint (2.3) to ∇T

xIu + It = 0 with spatial gradient ∇x = (∂x, ∂y)
T

and replacing u by v yields

0 = ∇T
xI(u+AΔx) + It

⇔ 0 = ∇T
xIu+∇T

xIAΔx+ It

⇔ 0 = Ixux + Iyuy + IxΔxa11 + IxΔya12

+ IyΔxa21 + IyΔya22 + It .

(2.6)

Flow vector u represents the translational motion of the center (x0, y0) of Λ. The
matrixA addresses smooth changes of the velocity field in the neighborhood, based on
elementary geometric transformations, namely rotation, dilation, shear and stretching.
Two examples of vector field transformations are compared to a constant vector field
in Fig. 2.2.
An affine optical flow model describes variations of u by matrix A and linear local
coordinates Δx. Obviously motion models based on quadratic local coordinates
Δx may be used as well. Recently, Li and Sclaroff [40] fit flow vectors to an eight-
parameter model corresponding to quadratic motion (cmp. [11]). The optical flow
model is given by

0 = ∇T
xI(u+AquadΔxquad) + It

⇔ 0 = Ixux + Iyuy + IxΔxa11 + IxΔya12

+ IyΔxa21 + IyΔya22

+ IxΔxΔya13 + IxΔx2a14

+ IyΔxΔya23 + IyΔy2a24 + It

(2.7)

9



2 Parameter Estimation of Dynamic Processes

a b

Figure 2.3: a: Aperture problem, flow not uniquely defined and b: full flow at a
feature point.

with

Aquad =

[
a11 a12 a13 a14 0
a21 a22 a23 0 a24

]
(2.8)

and xquad = [Δx,Δy,ΔxΔy,Δx2,Δy2]T. Quadratic models have also been used to
improve change detection algorithms [29]. There the gray-value distribution within a
region was modeled by a so-called quadratic picture function.

2.1.2 Model Limitations

Using a neighborhood assumption to solve equation (2.2) does not always yield the
correct flow as shown in Fig. 2.3. The so called aperture problem occurs if there is no
change of the spatial gradient ∇xI in the neighborhood. In this case the minimum
norm solution is the normal flow, pointing parallel to the direction of the spatial
gradient. To avoid the aperture problem, either global smoothness assumptions may
be applied or, for local methods, the size of the neighborhood has to be enlarged.
However, this may extend the region over motion boundaries, thus that constraints
are no longer consistent. In addition enlarging kernels blurs results. In order to
overcome this problem robust statistics [8] may be used. A sophisticated estimator
is presented in Sec. 2.3.
Another limitation of differential models is that differentiation in the BCCE (2.2)
assumes small motions. Therefore compliance with the temporal sampling theorem
is a basic prerequisite. So called multi-grid methods ([72, 8, 49, 65]) help to achieve
also larger motions reliably. These methods calculate motion estimates on image
pyramids, but so far are only available for 2 frame algorithms. Motion between the
coarsest images is significantly smaller than for the original images and the sampling
theorem is fulfilled. The motion estimates from the coarse images are used to warp
the image on the next resolution. The remaining motion vector field typically also
fulfills the sampling theorem. In subsequent steps only an incremental motion needs
to be estimated. These steps are repeated till the original image resolution is reached.
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2.2 Discretization

2.2 Discretization

Solving the BCCE (2.2) requires multi-dimensional, i.e., spatial and temporal, image
gradients. In a first step the image is discretized in order to be processed on a digital
computer. In a next step discrete filters are applied to calculate the sought image
gradients ∇I with ∇ = (∂x, ∂x, ∂t)

T. It is desired to minimize errors in both steps.
In general, discretization of an image sequence is already performed by the camera.
Errors coming from spatial and temporal discretization depend on camera properties,
like resolution of the image sensor, lens and frame-rate. Discretization error should
not be confused with quantization error, which also appears by digitizing an image
in the camera or a frame-grabber and is a rounding in the value range.
In order to minimize the discretization error caused by filtering, optimized filters
have been proposed in [64, 53, 54]. Multi-dimensional image derivatives are usually
computed via differences between neighboring pixel with backward [−1, 0] or central
[−0.5, 0, 0.5] differences. These traditional derivatives are not well suited for gradient
direction estimation [64]. In order to minimize the systematic error and to increase
the accuracy the authors in [64] and [53] propose the use of matched pairs of
derivative filters and lowpass filters. Simoncelli [64] presented optimized first order
derivatives and the corresponding smoothness filters. Scharr [53, 54] proposed a
general optimization framework for nonlinear composition of arbitrary filters. The
filter sets presented in [54] are optimized for optical flow estimation. It was shown that
these optimized filters get more accurate, the larger they get. However, larger filters
increase smoothing. Symmetric filters are denoted as h(r) = [hR, ..., h1, h0, h1, ..., hR],
i.e., with transfer function

ĥ(k̃) = h0 + 2
R∑

r=1

hr cos(πrk̃) (2.9)

and antisymmetric filters as h(r) = [hR, ..., h1, h0,−h1, ...,−hR] with h0 = 0, i.e.,
with transfer function

ĥ(k̃) = 2i
R∑

r=1

hr sin(πrk̃) . (2.10)

In order to demonstrate the influence of optimized filter sets on optical flow estimation
we compare the average angular error (see App.A) and its standard deviation obtained
for the Yosemite sequence (cmp. Fig. 2.1) using the structure tensor estimator (cmp.
Sec. 2.3.2) and different filter sets. A selection of first order filter sets proposed in
[54], central differences (3× 1× 1) and the corresponding average angular errors are
shown in Tab. 2.1. The 5× 5× 5 filter sets, which reduce the angular error up to a
factor of 4 compared to central differences, seem to yield a good trade-off between
accuracy and length. Therefore in this work the 5× 5× 5 filter sets proposed in [54]
are used in all experiments, if not stated otherwise.
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Table 2.1: Filter coefficients for different filter sets from [54] and the average angular
error (AAE) and its standard deviation of optical flow estimates for the Yosemite
sequence obtained when using the structure tensor TLS-estimator.

derivative, h0 to hR smoothing, h0 to hR AAE size

[0, 0.5] [1] 16.8± 25.2 3× 1× 1
[0, 0.5] [0.6326, 0.1837] 10.8± 24.7 3× 3× 3
[0, 0.3327, 0.0836] [0.4704, 0.2415, 0.0233] 4.0± 11.1 5× 5× 5
[0, 0.2232, 0.1190, 0.0130] [0.3845, 0.2461, 0.0583, 0.0031] 3.1± 7.6 7× 7× 7

2.3 Parameter Estimation

A general linear parameter estimation problem is of the form dTp = 0, where the
vector d contains data depending terms and the parameter vector p needs to be
estimated. Rearranging the brightness constancy constraint (2.3) yields

Ixux + Iyuy + It = ∇T
xIu+ It = dTp = 0 (2.11)

with spatial gradient ∇xI = [Ix, Iy]
T, data vector d = [Ix, Iy, It]

T and parameter
vector p = [uT, 1]T = [ux, uy, 1]

T. The parameter vector p has more than one degree
of freedom, thus dTp = 0 is an under-determined system of equations. Consequently
more information has to be provided if a unique solution p̃ shall be given. Modeling
the parameter field as shown in Sec. 2.1.1 yields additional constraints for the
parameter vector p.
In general one then solves a system of equations

dT
i p = 0 ∀i ∈ 1, . . . , N (2.12)

for a single vector p. Usually the number of equations N is greater than the degrees
of freedom in p. Then the system of equations is not solved exactly, but in a least
squares sense or minimizing a robust error norm.

2.3.1 Least Squares

In many models p is a homogeneous vector, with one component of it being a
constant, which is usually set to 1. Let this component be the last one. Equation
(2.12) can then be rewritten

J−1∑
j=1

(di)jpj = −(di)J ∀i ∈ {1, . . . , N} (2.13)
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where J is the number of components of p. We rewrite equation (2.13) as

Au = b (2.14)

where we renamed Aij = (di)j, uj = pj with p = (uT, 1)T, and bi = −(di)J for
j ∈ {1, . . . , J − 1} and i ∈ {1, . . . , N}. One can then solve for u in least squares
sense using the Moore-Penrose-pseudo-inverse A+ = (ATA)−1AT

ũ = A+b . (2.15)

In general ATA is a symmetric positive semi-definite matrix and therefore diagonal-
izable. But it is not necessarily invertible as one or more eigenvalues may be (close
to) zero, i.e., ATA may be rank deficient. If this is the case, one may calculate A+ by
diagonalization of ATA and inversion of all non-zero (or large enough) eigenvalues
only, instead of (ATA)−1 where all eigenvalues are inverted.

If ATA is invertible then solution ũ is fully determined. If it is not invertible
then the eigenvectors corresponding to the (very small or) zero eigenvalues span
the null space Null(ATA) = {u|ATAu = 0}. This means that solution ũ is only
determined up to an additive arbitrary vector u0 ∈ Null(ATA). Solution ũ given
in (2.15) is the shortest vector of all possible solutions and therefore is normal to
Null(ATA). The solution is then called normal solution. ATA is rank deficient, if
d(xi) (and therefore the intensity signal I(x)) does not vary enough in the local
neighborhood Λ. As Λ acts as an aperture on I(x) and is, in the rank deficient case,
selected too small with respect to changes in I(x), this phenomenon is sometimes
called aperture problem (cmp. Sec. 2.1.2).

2.3.2 Total Least Squares

As for standard least squares estimation (see Sec. 2.3.1) total least squares parameter
estimation solves (2.12) for p. The standard least squares approach assumes that
matrix A contains no errors, i.e., all errors of (2.14) are confined to b. In case of
solving (2.11), this assumption is not fulfilled, because both A and b are composed of
image gradients. In contrast to standard least squares, total least squares addresses
erroneous data in A. It is assumed that solution vector p̃ approximately solves all
equations in the local neighborhood Λ and therefore dT

i p only approximately equals
0. We get

dT
i p = ei ∀i ∈ 1, . . . , N (2.16)

with errors ei which have to be minimized by the sought solution p̃. We define
matrix D := [A,b] (cmp. (2.14)) composed of the vectors di via Dij = (di)j
for j ∈ {1, . . . , J} (in contrast to A in the least squares case in Sec. 2.3.1) and
i ∈ {1, . . . , N}. Equation (2.16) becomes Dp = e.
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We minimize e in a weighted 2-norm

||e||2 = ||Dp||2 = pTDTWDp =: pTJp
!
= min

⇒ p = argmin
p

pTJp
(2.17)

where W usually is a diagonal matrix containing positive or zero weights; typically
Gaussian weights are used. The matrix J = DTWD is called structure tensor.
Obviously ||e||2 depends quadratically on the length of p and ||e||2 = 0 if p = 0.
The additional constraint |p| = 1 is introduced to avoid this trivial solution.

The space of solutions p̃ is spanned by the eigenvector(s) to the smallest eigen-
value(s) of J. We call this space the null-space of J as the smallest eigenvalue(s) are
0 if the model is fulfilled perfectly, i.e., e = 0, this space is Null(J). For most models,
as e.g., standard optical flow with or without brightness changes the null-space is 1D
[26, 25]. Typically the last entry of p in these models is 1 and therefore p̃ has to be
divided by its last entry to get the sought model parameters.

For simultaneous estimation of depth and motion, and similar models presented
in Sec. 3.3 Null(J) is 2D or 3D, depending on the model used. There the sought
for solution is the set of orientation vectors, i.e., the eigenvectors spanning Null(J).
Parameters are disentangled using linear combinations of the found eigenvectors,
such that one of the last 2 or 3 entries (of the 2D or 3D case, respectively) is 1 and
the others are 0. See Sec. 3.3.2 for a detailed description of how the parameters are
subsequently derived.

If there is not enough variation in the data, the aperture problem occurs as it does
in standard least squares estimation (cmp. Sec. 2.1.2 and Sec. 2.3.1). This means the
null-space has a higher dimension as indicated by the model. The normal solution is
then the shortest vector in Null(J) with the last entry (1D null-space) or one of the
last 2 or 3 entries (2D or 3D null-space) equal to 1. See e.g., [68] for an analysis of
the aperture problem and possible solutions.

If there is too much variation in the data, the smallest eigenvalues are considerably
larger than 0. Therefore the model error ||e||2 from (2.17), also called residual of
the local fit, is large because it equals the smallest eigenvalue. If this value is much
larger than expected from the noise level in the data the model assumption does not
fit the data. Estimated parameters are then unreliable. We can use the smallest
eigenvalue μmin of J to define a confidence measure as follows:

ω =

{
0 if μmin ≥ σ2,(

σ2−μmin

σ2

)2

else.
(2.18)

where σ2 is the variance in the structure tensor components due to noise in the data.
Variance σ2 of the structure tensor components can be calculated from the noise
variance in the image data by error propagation. Estimation of noise in the image
data itself is difficult as noise has to be separated from structure. One approach is
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using a Laplacian operator and adaptive edge detection following [71].
In most cases it does not make a lot of sense to distinguish between full and

normal solutions and cases where model assumptions are not met. Instead reliability
of an estimated parameter should be calculated by a suitable error analysis (see
e.g., [46]). If an aperture problem occurs variance of an estimated parameter in the
undetermined direction will be close to infinity. In the following we therefore assume
that enough data variation is present and an error analysis is performed, if needed.

Structure Tensor Method

Optical flow estimation via the structure tensor is discussed in [6, 33, 26]. There
an image sequence I(x) is treated as a volume of scalar, unit-free gray values with
x = (x1, x2, x3)

T where x3 is time. The single motion model given in (2.3) can thus
be written

∇TI · (uT, 1)T = 0 (2.19)

with data vector d = ∇I and parameter vector p = (uT, 1)T. The data vector can
be calculated by convolving intensity signal I with derivative filters optimized for
optical flow computation (cmp. Sec. 2.2). The structure tensor J = DTWD from
(2.17) may then be calculated as

Jρ = Gρ ∗ (∇I∇TI) =

⎛
⎝J11 J12 J13
J12 J22 J23
J13 J23 J33

⎞
⎠ , (2.20)

where weights W are given by a Gaussian filter kernel Gρ with variance ρ2. The
support of this kernel defines the local neighborhood Λ. In Sec. 2.3.1 matrix ATA
was used to generate the Moore-Penrose-inverse. Gaussian filtering of ATA yields the
upper left 2× 2 submatrix of Jρ and has been used for local orientation estimation in
2D data [7, 44]. Eigenvectors ei (i ∈ {1, 2, 3}) of Jρ give preferred local orientations,
and corresponding eigenvalues μi denote local contrast or gray-value variation along
these directions. Typically we deal with noisy data, thus part of this contrast
comes from the noise. For independently distributed, additive Gaussian noise of
variance σ2

n each diagonal entry of Jρ on average is increased by the noise variance
σ2
d in the derivative estimates2. As this does not change the eigensystem of Jρ the

structure tensor method is robust under this kind of noise [34]. In addition it can be
implemented efficiently [26].

Eigenanalysis

An eigenvalue analysis of the structure tensor corresponds to a total least squares fit
of a locally (on the scale of Gρ) constant displacement vector field to the intensity

2This variance σ2
d depends on the noise variance σ2

n and the actual implementation of the
derivatives.
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a b

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

c d

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Figure 2.4: The four considered spatio-temporal neighbourhoods. a: no structure, b:
point-like structure, c: linear structure and d: no coherent structure.

data (see Sec. 2.1.1 and e.g., [26]). In the following we assume the eigenvalues
μi (i ∈ {1, 2, 3}) of Jρ to be sorted in descending order and the corresponding
eigenvectors ei to be normalized. Jρ thus can be written

Jρ = (e1, e2, e3)M(e1, e2, e3)
T (2.21)

where M is a 3× 3 diagonal matrix with Mii = μi.
The noise variance σ2

d is a natural threshold below which an eigenvalue μ can be
considered to be 0. As illustrated in Fig. 2.4 there are four cases that have to be
considered:

1. No structure (μ1,2,3 � σ2
d): All eigenvalues vanish and no motion can be

estimated.

2. Corner- or point-like structure (μ3 � σ2
d; μ1, μ2 > σ2

d): Moving corner- or
point-like structures result in one-dimensional trajectories and are characterized
by only the third eigenvalue of Jρ vanishing. In this case the displacement
vector is easily obtained from e3:

u =
1

e3,3
(e3,1 e3,2)

T . (2.22)

3. Linear structures (μ2, μ3 � σ2
d; μ1 > σ2

d): This is the aperture problem and
only the flow n normal to the intensity structure may be estimated. For the
special case of optical flow (3D signal I, 1D null-space of J) it can be estimated
from e1 (cmp. [68]):

n =
−e1,3

e21,1 + e21,2
(e1,1 e1,2)

T . (2.23)

4. No coherent motion (μ1, μ2, μ3 > σ2
d): In this case the local fit of the flow

model (here constant) failed and no sensible motion may be estimated. This
happens for example in the presence of motion discontinuities.
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2.3.3 Respecting Known Measurement Errors in Estimation
Schemes

In Sec. 2.3.2 standard total least squares estimation is presented without regarding
known measurement errors, i.e., covariance matrices. In general motion model
components may have different variances, e.g., in the affine motion model (2.6)
presented in Sec. 2.1.1. There, gradients are weighted by local coordinates Δx.
Assuming that the gradients have all the same variance σ, the covariance matrix of
an affine model with

d = [Ix, Iy, IxΔx, IxΔy, IyΔx, IyΔy, It]
T

and
p = [ux, uy, a11, a12, a21, a22, 1]

T

is given by

C(Δx,Δy) = σ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 Δx Δy 0 0 0
0 1 0 0 Δx Δy 0
Δx 0 Δx2 ΔxΔy 0 0 0
Δy 0 ΔxΔy Δy2 0 0 0
0 Δx 0 0 Δx2 ΔxΔy 0
0 Δy 0 0 ΔxΔy Δy2 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.24)

depending on local coordinates Δx. In the affine model the local coordinates may
influence estimation depending on their scale, because changing the scale directly
changes the covariance matrix. In some computer vision tasks like computation
of the fundamental matrix [23] they are scaled in the range [−1; 1]. However, the
scale of the local coordinates and therefore the scale of parts of the data vector d,
may be set arbitrarily. Then it is desirable to weight parameters according to their
covariances to minimize bias coming from different measurement errors. Re-scaling
of variances may avoid these biased estimates [16, 38]. An overview of estimation
approaches incorporating covariances can be found in [16]. In this section we briefly
review three of the most common techniques, namely

� Sampson’s scheme (SMP, [52]),

� the Fundamental Numerical Scheme (FNS, [16]) and

� First Order Renormalization Version III (FOR III, [38]).

Standard total least squares of Sec. 2.3.2 can be understood as minimizer of the
energy

E =
N∑
i

pTAip

pTp
(2.25)
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for all constraints i in a neighborhood of size N and non-smoothed structure tensor

A = J0. The eigenvector to the smallest eigenvalue of
N∑
i

Ai yields pTLS, the solution

of (2.25) as shown in Sec. 2.3.2. The standard total least squares estimator treats all
data as being equally important. However, if information about measurement errors
is available, e.g., the covariance matrix of the affine model (2.24), it is desirable to
incorporate this information into the estimation process. Based on the principle of
maximum likelihood and Kanatani’s work on geometric fitting [38], Chojnacki et al.
[16] derived a more sophisticated energy function. The measurement errors for each
constraint i may be given by a covariance matrix Ci. Then, an approximation of the
energy of a maximum likelihood (AML) estimate can be derived by

EAML =
N∑
i

pTAip

pTCip
. (2.26)

The minimum of (2.26) can be determined by finding pAML with the variational
approach ∂pEAML = 0, where

∂EAML

∂p
= 2Xpp

!
= 0 (2.27)

and

Xp =
N∑
i

Ai

pTCip
−

N∑
i

pTAip

(pTCip)
2Ci . (2.28)

This equation is non-linear and not every solution of the variational equation is a
global minimum of EAML.
In practice p is calculated numerically. It is assumed that pTLS already is close to
pAML. Numerical methods with seed pTLS are then likely to converge to pAML.

Fundamental Numerical Scheme

A vector p solves (2.28) if and only if it falls into the null space of matrix Xp. Starting
with pTLS = pk−1 an improved estimate can be obtained by taking the eigenvector to
the smallest eigenvalue of Xpk−1

. This eigenvector most closely approximates the null
space of Xpk

. When the new solution vector pk is sufficiently close to the previous
one pk−1 this iterative procedure is terminated, otherwise k is incremented. This
minimization scheme is presented in [16] and is the so-called Fundamental Numerical
Scheme.
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Sampson’s Scheme

Another numerically estimation technique for (2.27) is the so-called Sampson’s
Scheme. There, solution vector p in the denominator of EAML is frozen at a value ξ.
The energy to be minimized becomes

ESMP = pTMξp (2.29)

with

Mp =
N∑
i

Ai

pTCip
. (2.30)

Starting with an initial estimate p0 (typically p0 = pTLS) and a stopping criterion,
(2.29) may be solved iteratively.
It can be shown that Sampson’s Scheme has an inherent systematic bias. This bias
may be avoided by the renormalization technique of Kanatani [38], see below.

First Order Renormalization Scheme

Following [16] the bias of M can be removed with the help of a compensating factor
Jcom. This leads to

Yp =
N∑
i

Ai − Jcom(p)Ci

pTCip
= Mp − JcomNp (2.31)

where Mp is given by (2.30), and Np is defined by

Np =
N∑
i

Ci

pTCip
, (2.32)

and

Jcom =
1

N

N∑
i

pTAip

pTCip
. (2.33)

The renormalization equation is then

Ypp = 0 (2.34)

analog to the variational equation (2.27). Chojnacki et al. [16] present several
schemes for solving the renormalization equation. Tests showed that the First Order
Renormalization Scheme Version III yields best results regarding accuracy and speed.
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a b

Figure 2.5: One frame of the sinusoidal input sequence. a: Without noise and b:
with additive Gaussian noise with standard deviation σn = 20.

The procedure of the scheme is

1. Take pTLS as initial estimate p0.

2. Assuming that pk−1 is known, compute matrices Mpk−1
and Npk−1

.

3. Compute the normalized eigenvector of the eigenvalue problem

Mpk−1
ξ = Npk−1

ξ

corresponding to the smallest eigenvalue and take this eigenvector as pk.

4. If pk is sufficiently close to pk−1, then terminate the procedure, otherwise
increment k and return to step 2.

For further details we refer to [16].

Experiments

For systematic error analysis we generate test sequences with the Sequence Generator
(for details see App. B), showing a moving sinusoidal pattern with wavelength λ = 32
pixel in x- and y-direction. The movement of the surface patch generates a smooth
optical flow field with translational and affine motion elements and displacements
smaller than one pixel per frame to ensure compliance with the sampling theorem.
The intensity values of the sequence are in the range [0; 255]. A frame of the si-
nusoidal sequence, without noise and with additive Gaussian noise with standard
deviation σn = 20, is depicted in Fig. 2.5. The sequence is of size 301 × 301 pixel
and contains 5 frames. Filters used for computing image gradients are the 5× 5× 5
filter sets proposed in [54], see also Sec. 2.2. Size of the neighborhood is 165× 165
pixel. We test robustness to noise of the proposed estimators. Therefore we add i.i.d.
(independent and identically distributed) Gaussian noise with increasing standard
deviations σn to the sequence and calculate the average of 25 parameter estimates
around the center of the sequence. The experiment is repeated 20 times for each σn.
The covariance matrix Λ is given in (2.24).
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Figure 2.6: Parameter estimation with standard least squares (OLS), and total least
squares (TLS∗) techniques. The TLS∗ techniques are standard TLS, FNS, SMP and
FOR III. Angular errors of translational (left) and affine (right) motion parameters
for increasing additive Gaussian noise are shown. Scaling of local coordinates with
k = 1 (top), i.e., normalized by pixelsize, and with k = 1e− 4 (bottom).

Figure 2.6 shows estimation results of standard least squares (OLS), total least
squares (TLS) and the proposed numerical schemes for solving the variational equa-
tion, namely FNS, SMP and FOR III. The average angular error (App.A) of the
translational parameters (left) and of the affine motion parameters (right) is shown
for increasing standard deviations σn of additive Gaussian noise. Scaling of local
coordinates may influence estimation (cmp. Sec. 2.3.3). In a standard affine motion
model (2.6) weights of affine parameters are different to weights of the translational
motion parameters. In order to examine the influence of different weights, we distin-
guish between angular errors of translational and affine motion parameters.
Figure 2.6a and b show angular errors using local coordinates scaled by k = 1, i.e.,
normalized by pixelsize, Δx ∈ [−82; 82]. In this case, the standard least squares
approach (Sec. 2.3.1) yields highest errors for translational motion estimates for high
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noise variances (σn > 20). All other techniques perform similar for translational
motion. Affine motion parameters are slightly better estimated by schemes incorpo-
rating covariance matrices (FNS and FOR III). Standard TLS, OLS and SMP yield
similar results.
The effect on incorporating covariance matrices is only visible for high noise. Affine
motion parameters for optical flow are typically up to a factor 100 smaller than
translational motion parameters, i.e., the impact of re-scaling these parameters is
small compared to the overall error. Experiments where incorporation of covariance
information yield superior results are ellipse fitting [16] or fundamental matrix esti-
mation [17]. There the influence of affine parameters is higher, because the scaling is
different, e.g., typically in the range of [−1; 1] for fundamental matrix estimation.
Figure 2.6c and d show results of a second experiment where affine parameters are
scaled by a factor k = 1e − 4 before estimation, i.e., Δx ∈ [−0.0082; 0.0082] and
re-scaled afterwards. Using this scaling, errors in affine parameters influence errors
in translational parameters much more than using a scaling factor k = 1.
In this case, the FNS yields no reliable estimates for neither translational nor affine
motion parameters. Standard TLS and SMP perform similar for small noise variances.
For noise with standard deviation σn > 20 SMP is not able to estimate reliable
motion parameters any more. Estimates of OLS and standard TLS yield similar
angular errors. However, FOR III estimates show lowest angular errors for noise
with standard deviation σn > 20. The affine parameters are best estimated with
OLS and FOR III. Angular errors of SMP and standard TLS are more than one
order of magnitude higher compared to FOR III for σn > 20.
We conclude that the scale, i.e., selected units, of local coordinates has significant
effect on estimation results. Using the FOR III scheme or OLS the effect is negligible,
but standard TLS, the SMP scheme and the FNS scheme may yield highly degraded
estimation results, if the scaling is not appropriate. The FOR III scheme yields
overall highest accuracy for all scaled and unscaled parameters.

2.3.4 Robust Estimation

The presented estimation approaches assume that motion within a local neighborhood
Λ can be determined by a single parameter set, e.g., a single motion vector, if the
constancy assumption (2.3) is used. This motion assumption is violated in common
situations due to transparency, depth discontinuities, shadows or noise. Robust
estimation approaches relax the assumption of single motions. Black and Anandan
[9] introduced a robust least squares estimation framework for optical flow to handle
discontinuities and to estimate multiple motion in a spatial neighborhood. A robust
ρ-function is used to decrease the influence of outliers in the estimation process. In
order to estimate a second motion another estimation process may be initialized,
using only the outliers of the first estimation process. The use of a robust ρ-function
is detailed in the following example.
The OLS parameter estimation problem for optical flow is to find a motion vector u
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which minimizes energy function E

E(u) =
∑

(x∈Λ)
(Ix(x, t)ux + Iy(x, t)uy + It(x, t))

2

=
∑

(x∈Λ)

(
(∇T

xI)u+ It
)2

=
∑

(x∈Λ)
ρquad

(
(∇T

xI)u+ It
) (2.35)

with the quadratic ρ-function ρquad(x) = x2 and neighborhood Λ. This ρ-function
is optimal, when errors in ∇xI are normally distributed. However, the quadratic
ρ-function assigns high weights to outlying measurements. The so-called influence
function of a particular ρ-function is used to demonstrate this behavior. The influence
function characterizes the bias that a particular measurement has on the solution and
is proportional to the derivative, Ψ, of the ρ-function. In the least squares case, the
influence of data points increases linearly and without bound. To increase robustness
a ρ-function should reduce the weight of outliers. The quadratic ρ-function and
three common robust ρ-functions with the corresponding Ψ-functions are depicted in
Fig. 2.7.
The truncated quadratic

ρtq(x, α, λ) =

{
λx2 if |x| <

√
α√
λ

α else
(2.36)

weights errors quadratically up to a fixed threshold. Beyond that threshold errors
receive a constant value α. The truncated quadratic is similar to the Huber function
[30]. There errors increase linearly beyond the threshold. Other robust functions are
the Geman and McClure [20]

ρgem(x, σ) =
x2

σ + x2
(2.37)

and the Lorentzian

ρlor(x, σ) = log

(
1 +

1

2

(x
σ

)2
)
. (2.38)

These robust function have differentiable Ψ-functions

Ψgem(x, σ) =
2xσ

(σ + x2)2
(2.39)

and

Ψlor(x, σ) =
2x

2σ2 + x2
, (2.40)

which provide a more gradual transition between inliers and outliers.
To make (2.35) more robust, it is reformulated to account for outliers by using a
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Figure 2.7: Common weighting ρ-functions (left) and their derivatives Ψ (right). From
top to bottom: Quadratic, truncated quadratic, Geman-McClure and Lorentzian.
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robust ρ-function. We get

E(u) =
∑
(x∈Λ)

ρ
(
(∇T

xI)u+ It, σ
)

(2.41)

with robust function ρ.

Robust Least Squares

Black and Anandan [9] use successive over-relaxation (SOR, cmp. [12]) to find the
minimum of (2.41). The iterative update equation for one motion parameter ui at
step n+ 1 is

un+1
i = un

i − κ
1

T (ui)

∂E

∂ui

(2.42)

where κ is an over-relaxation parameter. When 0 < κ < 2 the method can be shown
to converge, but the rate of convergence is sensitive to the exact value of κ. The
term T (ui) is an upper bound on the second partial derivative of E,

T (ui) ≥ ∂2E

∂u2
i

. (2.43)

Typically the objective function is non-convex. To find the globally optimal solution
Black and Anandan propose to use a robust ρ-function with a parameter which
controls the influence of the outliers, e.g., parameter σ. They start with minimizing
a convex approximation of the objective function, i.e., high σ, thus outliers are not
down-weighted. Then they successively minimize better approximations of the true
objective function, i.e., lowering σ, starting from the previous estimated minimum,
so that influence of outliers on the estimation process gets less. This approach works
well in practice, but is not guaranteed to converge to the global minimum, because
the initial estimate may be too far away from the global minimum.

Robust Total Least Squares

Equation (2.41) may be solved in total least squares sense analog to Sec. 2.3.2. The
approximated maximum likelihood function (2.26) is combined with the robust
ρ-function by

EAML,Rob =
N∑
i

ρ

(
pTAip

pTCip
, σ

)
. (2.44)

The minimum of the energy EAML,Rob may be found numerically with the schemes
presented in Sec. 2.3.2, e.g., FOR III or FNS. Analog to [9] the control parameter σ
of the robust function should be successively minimized to find the global minimum.
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Figure 2.8: Robust estimation. a: Ground truth values, b: robust estimation with
translational motion model, c and d: robust estimation with affine motion model. c:
Translational motion estimates and d: affine motion estimates.

Robust Estimation for Parametric Motion Models

Finding the global minimum of a robust energy function highly depends on the choice
of the ρ-function and its control parameter σ. The proposed minimization schemes
work well in practice for constant motion models. Difficulties arise when using more
complex motion models, e.g., an affine motion model (2.6).
An experiment investigating the influence of ρ-functions on parameter estimation
for one dimensional optical flow is shown in Fig. 2.8. Figure 2.8a shows the ground
truth optical flow parameters. Translational motion parameters u1 = 4 and u2 = 2
are depicted in blue and affine motion parameters a1 = a2 = 0 in red, i.e., pure
translational motion. The data term is given by d1 = [5,−20]T and d2 = [7,−14]T.
A motion discontinuity occurs at x = 15. The control parameter for ρgem and ρlor is
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Figure 2.9: Robust estimation. Weights for estimate at x = 23, a: robust estimation
with translational motion model and b: robust estimation with affine motion model.

lowered from σ = 15 to σ = 0.1. The threshold for the truncated quadratic is α = 3
and λ = 1. Size of the neighborhood is N = 21.
Figure 2.8b shows estimation results using robust total least squares and a constant
motion model. It clearly demonstrates the smoothing effect using the quadratic
ρ-function, due to high weighting of outliers. The truncated quadratic ρ-function
recovers a discontinuity, but it is shifted by approx. 6 values and still the motion
parameters are slightly smoothed. Using robust functions ρgem or ρlor yield clearly
separated motion parameters. However, using the ρgem-function proposed by Geman
and McClure also leads to a shift of the discontinuity. The shift of the discontinuity
depends on the difference of the energy functions around the discontinuity, the
ρ-function and its control parameter, which determines when a parameter is declared
as an outlier. Figures 2.8c and d show estimation results when using an affine motion
model. Results for translational motion parameters are depicted in Fig. 2.8c, and for
affine motion parameters in Fig. 2.8d. Simultaneous estimation of all parameters of a
parametric model leads to erroneous estimates at the motion discontinuity, because
the iterative estimation process does not converge to the global energy minimum. A
local minimum solution is not a solely translational motion at one side and outliers
at the other side, but a divergent motion. Figure 2.9 shows weights for x = 23, i.e.,
near the discontinuity, calculated by the different ρ-functions for the translational
and the affine motion model. Using the translational motion model, the data on
the left side gets high weights and the outliers on the right side are suppressed.
Figure 2.9b demonstrates that high weights are assigned to data on both side of the
discontinuity, when an affine motion model is used. This effect occurs regardless of
which ρ-function is used.
Black and Anandan avoid this kind of erroneous estimates for parametric models by
successive estimation of translational and affine model parameters.
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a b c d

Figure 2.10: a and b: First and last frame of a sinusoidal sequence with two affine
motions. The white rectangle depicts the area, where the average angular error is
evaluated. c and d: gray value coded ground truth of translational motion parameters
in x- and y-direction respectively.

Experiments

In this section we compare the robust estimators Robust TLS, Robust Affine OLS and
Robust Affine TLS. Sinusoidal sequences are generated with the Sequence Generator
(App.B). Wavelength of the sinusoidal pattern is λx = λy = 8 pixel and sequence
size is 301× 301× 9. In the first experiment two patches move with translational
motion. In the second experiment both patches have translational and affine motion
parameters. The maximum motion in both sequences is less than one pixel per
frame. Figure 2.10 shows two frames of the sequence for translational and affine
motion and the gray value coded ground truth optical flow in x- and y- direction.
Optical flow values in x-direction are in the range [−0.1, 0.3] and in y-direction in the
range [−0.3, 0.3]. Standard deviation of additive i.i.d. Gaussian noise is increased
and for each standard deviation experiments are repeated 10 times. The size of the
neighborhood is 65 pixel in x- and y-direction and 5 frames in time and is weighted
with a Gaussian with standard deviation 19 × 19 × 1. All robust estimators use
the Lorentzian (2.38), initialized with σ = 5 and lowered to σ = 0.1. Iterations are
stopped after 50 iterations or when change of parameters is below 1E − 08. The
average angular error is calculated for a rectangular patch of 151× 11 pixel around
the discontinuity (see Fig. 2.10a). Translational and affine angular errors for both
sequences are depicted in Fig. 2.11.
Figure 2.11a demonstrates that all estimators perform similar for noise with standard
deviation up to approx. σn = 3. The ordinary least squares estimator performs
slightly better compared to the total least squares estimators for higher noise values.
In the case of no noise the standard TLS performs best. Affine angular errors are
similar for both affine estimators, when noise is present. In the noise-free case the
OLS approach yields lower affine angular errors.
In Fig. 2.11c is shown that the affine TLS approach performs best for low noise
(σn < 3), when a sequence contains affine motion parameters. Standard TLS performs
better than affine OLS for noise with σn < 1. All estimators yield similar results for
higher noise variances. Figure 2.11d demonstrates that affine angular errors of the
affine TLS is up to one orders of magnitude lower than for the affine OLS in the
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Figure 2.11: Average translational (top) and affine (bottom) angular errors of motion
estimates near a discontinuity caused by two translational (left) and two affine (right)
moving surface patches (see Fig. 2.10).

noise free case. The TLS estimator yields still slightly better results for noise with
σn < 3, for higher standard deviations of noise OLS and TLS perform similar.

2.4 Conclusions

In this section parameter estimation techniques applied to motion estimation based
on optical flow have been presented. A data model based on the brightness constancy
constraint and constant, affine and quadratic motion models for optical flow have
been introduced. Optimized filters used to calculate image derivatives have been
proposed in Sec. 2.2. Standard local estimation techniques and more sophisticated
local estimators incorporating covariance distributions and handling outliers have
been discussed and compared in Sec. 2.3.
Synthetic experiments (cmp. Fig. 2.11) showed that affine modeling of the flow field
does only improve estimation results when an appropriate estimator is used. An
affine TLS estimator yields better results in the low noise case, whereas the least
squares estimator proposed by Black and Anandan [9] yields only similar or worse
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results than standard TLS. However, in order to ensure reliable estimates the size of
the local neighborhood has to be increased for affine motion models, because more
motion parameters have to be estimated.
Incorporating known measurement errors yields better motion estimates for sequences
heavily corrupted by noise or when the influence of (affine) parameters is high due
to inappropriate scaling of parameters. In this case the First Order Renormalization
Scheme Version III (FOR III) showed best performance. Standard TLS yields similar
performance for input data with low noise (σn < 20) and appropriate scaling of
parameters, i.e., scaling factor k = 1.
Robust estimation should be used when discontinuities (e.g., caused by noise or
multiple motions) occur in the data. The Lorentzian ρ-function best separated differ-
ent parameter near discontinuities. Combinations of parametric motion models and
robust estimation techniques may lead to corrupt estimates at motion discontinuities.
Successive robust estimation of translational and affine motion parameters can avoid
convergence to local minimum solutions. In synthetic experiments the robust affine
TLS outperformed standard TLS and the affine OLS [9] for translational and affine
motion estimation in sequences with discontinuities.
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Chapter 3

Approaches to 3D Motion
Estimation

In literature many models have been introduced for 3D structure and 3D motion
estimation. 3D motion is sometimes called Scene Flow, to point out the relationship
to optical flow, or Range Flow, that is 3D motion calculated from range data. Both
motion estimation techniques, namely optical flow-based and correspondence-based
(cmp. Sec. 2), have been used for 3D structure and 3D motion estimation. However,
optical flow-based estimation schemes have been shown to yield higher accuracy for
dedicated setups [26]. In this work the focus is on optical flow-based estimation. The
so-called Scene Flow technique [74] is one of the most popular 3D motion estimation
frameworks. In general this technique may be used for estimation of 3D motion from
one or more cameras and for computing scene structure. However, the flow-based
reconstruction algorithm proposed in [76] can only recover structure where the scene
is actually moving. The 3D motion estimation algorithm has been improved by [40],
recently. They incorporate probability distributions from 2D optical flow to make
the estimation of 3D motion more reliable. Range Flow estimation techniques are
based on range image sequences. Spies et al. [67] presented a framework where range
constraints on range sequences are combined with optical flow on intensity sequences.
Scene Flow and Range Flow techniques solely estimate 3D motion based on already
available 3D structure information. In contrast [57] presented a multi-camera frame-
work for simultaneous estimation of 3D structure and 3D motion. Therefore the
parameters of an affine optical flow-based model (cmp. Sec. 2.1.1) are used to solve for
depth, surface slopes and translational motion. The framework has been generalized
in [56] and has been made robust against brightness changes in the data [60]. Further
improvements in [62] made the model more robust and incorporated constraints from
Range Flow.
In this chapter we review Scene Flow, Range Flow and the Affine Model. We evaluate
estimation of depth and slopes with the Affine Model on synthetic test sequences
and on real data. Finally the three motion estimation techniques are compared on
synthetic sequences and real data.
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3.1 Scene Flow

Vedula et al. [74] define Scene Flow as the 3D motion field of points in the world,
just as optical flow is the 2D motion field of points in the image (cmp. Sec. 2.1).
Optical flow is the projection of 3D motion onto the image plane of a camera.

Given a 3D point X = (X, Y, Z)T, the projection onto the image plane in camera
c is denoted by xc = (xc, yc)

T. The 2D components of xc are

xc =
[Pc]1(X, Y, Z, 1)T

[Pc]3(X, Y, Z, 1)T
, yc =

[Pc]2(X, Y, Z, 1)T

[Pc]3(X, Y, Z, 1)T
(3.1)

where [Pi]j is the jth row of the camera projection matrix Pc [23]. If the camera is
not moving, then the 2D optical flow u = dxc

dt
is uniquely determined by

u =
∂xc

∂X

dX

dt
. (3.2)

This equation denotes how optical flow u can be computed for known 3D motion
f = dX

dt
. Computing 3D motion f from optical flow u requires inverting (3.2). The

problem is, that X depends not only on the optical flow but also on time, indirectly
through the 3D structure, i.e., X = X(xc(t), t). 3D motion f is given by the total
differential of X with respect to time

dX

dt
=

∂X

∂xc

dxc

dt
+

∂X

∂t

∣∣∣∣
xc

. (3.3)

This means that the motion of a point cannot be calculated solely from optical flow.
The second term determines the change of a point on the surface imaged by a fixed
pixel, i.e., the motion of X along the ray corresponding to xc. In order to solve
for 3D motion f with (3.3) this motion has to be known. If structure data is not
available for additional time steps more than one camera viewing the scene is needed
to invert (3.2). Assuming that optical flow is known we have two linear constraints
and three unknowns in f . Analog to optical flow (cmp. Sec. 2.1), more than two
equations are needed to solve for 3D motion f , i.e., at least two cameras are needed.
The final equation system is

Bf = U , with B =

⎛
⎜⎜⎜⎜⎜⎝

∂xc,1

∂X

∂xc,1

∂Y

∂xc,1

∂Z
∂yc,1
∂X

∂yc,1
∂Y

∂yc,1
∂Z

∂xc,2

∂X

∂xc,2

∂Y

∂xc,2

∂Z
...

...
...

∂xc,N

∂X

∂xc,N

∂Y

∂xc,N

∂Z

⎞
⎟⎟⎟⎟⎟⎠ and U =

⎛
⎜⎜⎜⎜⎜⎝

∂xc,1

∂t
∂yc,1
∂t

∂xc,2

∂t
...

∂xc,N

∂t

⎞
⎟⎟⎟⎟⎟⎠ (3.4)

for N calibrated cameras. Analog to optical flow, (3.4) may be solved with any
technique presented in Sec. 2.3. Vedula et al. [75] propose a singular value decompo-
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sition of B to find the solution that minimizes the sum of least squares of the error
obtained by re-projecting the 3D motion onto each of the optical flows.

3.2 Range Flow

The Range Flow model is based on two motion constraints: one for range data
and the other one for intensity data. Following [69], we briefly review these two
constraints.

3.2.1 The Range Constraint

Let a surface be described by its depth Z = Z(X, Y, t) as a function of space and
time, where X, Y and Z are spatial coordinates and t denotes time. Without loss of
generality, we define X and Y to be aligned with the camera sensor coordinates x
and y, respectively. The Z-axis is the optical axis of the camera, which is assumed to
be projective. The total derivative of Z with respect to time then yields the so-called
range flow motion constraint equation

dZ

dt
= ∂XZ

dX

dt
+ ∂YZ

dY

dt
+ ∂tZ (3.5)

where partial derivatives are denoted by ∂XZ := ∂Z
∂X

and so on. The range flow is now
defined as f = [U, V,W ]T := [dX

dt
, dY

dt
, dZ

dt
]T. Some range sensors like those used in

[67], and 3D structure from motion algorithms (cf. [60]) produce range data as data
sets X = X(x, y, t), Y = Y (x, y, t) and Z = Z(x, y, t) over the sensor coordinates x,
y and time t. Rewriting the range flow constraint (3.5) as in [67] allows to compute
partial derivatives directly on the sensor grid rather than on world coordinate data,
thus avoiding interpolation artifacts and expensive preprocessing steps. Range flow,
i.e., the total derivatives of the world coordinates with respect to time, may then be
calculated as

U =
dX

dt
= ∂xXẋ+ ∂yXẏ + ∂tX (3.6)

V =
dY

dt
= ∂xY ẋ+ ∂yY ẏ + ∂tY (3.7)

W =
dZ

dt
= ∂xZẋ+ ∂yZẏ + ∂tZ (3.8)

where total derivatives with respect to time are indicated by a dot. Not being
interested in the changes on the sensor grid, i.e., the optical flow, ẋ and ẏ in
(3.6)-(3.8) can be eliminated. This yields

∂(Z, Y )

∂(x, y)
U +

∂(X,Z)

∂(x, y)
V +

∂(Y,X)

∂(x, y)
W +

∂(X, Y, Z)

∂(x, y, t)
= 0 (3.9)
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where
∂(Z, Y )

∂(x, y)
=

∣∣∣∣ ∂xZ ∂xY
∂yZ ∂yY

∣∣∣∣ = ∂xZ∂yY − ∂yZ∂xY (3.10)

is the Jacobian of Z, Y with respect to x, y, and so on. Equation (3.9) depends only
on derivatives in sensor coordinates, and can be calculated easily using derivative
kernels. Assuming aligned world and sensor coordinate systems (∂yX = ∂xY = 0),
(3.9) reduces to

(∂yY ∂xZ)U + (∂xX∂yZ)V − (∂xX∂yY )W

+ (∂xX∂yY ∂tZ − ∂xX∂tY ∂yZ − ∂tX∂yY ∂xZ) = 0 . (3.11)

3.2.2 The Intensity Constraint

The range constraint is based solely on range data, and, analog to optical flow (cmp.
Sec. 2.3.2) the full flow can only be estimated where 3 or more distinct depth planes
intersect. Surfaces are sometimes nearly planar, smooth surfaces resulting in aperture
problems almost everywhere when using the range flow constraint only. As proposed
in [67], intensity data should therefore be incorporated in addition. Let the intensity
of a point remain constant over the observation time interval. Then the so-called
brightness constancy constraint equation often used for optical flow estimation (see,
e.g., [4]) holds. Linearization of this constraint yields

dI

dt
= ∂xIẋ+ ∂yIẏ + ∂tI = 0 . (3.12)

Eliminating optical flow (ẋ, ẏ) using (3.6) and (3.7) yields

∂(I, Y )

∂(x, y)
U +

∂(X, I)

∂(x, y)
V +

∂(X, Y, I)

∂(x, y, t)
= 0 . (3.13)

The estimated range flow f = [U, V,W ]T has to fulfill both the range flow constraint
(3.9) and the intensity constraint (3.13). The intensity constraint is more reliable
to provide point-to-point correspondences, and therefore often solves the aperture
problem. Together with the range constraint, it allows to solve for f in places where
the range constraint alone is insufficient.

3.2.3 Range Flow Estimation

To estimate parameters within a total least squares framework, we closely follow [69].
The range constraint (3.11) yields for every pixel an equation of the form dT

rcp = 0
with

drc =

[
∂ (Z, Y )

∂ (x, y)
,
∂ (X,Z)

∂ (x, y)
,
∂ (Y,X)

∂ (x, y)
,
∂ (X, Y, Z)

∂ (x, y, t)

]T
(3.14)
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and parameter vector
p = [U, V,W, 1]T . (3.15)

To solve this equation standard total least squares is used (cmp. Sec. 2.3.2), but
any other estimator proposed in Sec. 2.3 could be used as well. As described in
Sec. 3.2.2 we have more than one constraint for the U and V components of Range
Flow. In the same way as expressing the range constraint by dT

rcp = 0, the intensity
constraint may be expressed by dT

I p = 0, where dI is computed from the observed
data according to

dI =

[
∂ (I, Y )

∂ (x, y)
,
∂ (X, I)

∂ (x, y)
, 0,

∂ (X, Y, I)

∂ (x, y, t)

]T
. (3.16)

As shown in [69], combining the different constraints yields a new structure tensor
which is simply the weighted sum of the tensor Jrc from the range constraint (3.9),
and the tensor JI from the intensity-dependent constraint (3.13). With the weight
β, the overall tensor thus is

J = Jrc + βJI . (3.17)

The weight β may be used to account for different signal-to-noise-ratios in the
structure tensors. Furthermore, the data channels should be scaled to the same mean
and variance before they are combined.
The optimal estimate of the sought parameter vector is then given by the eigenvector
b corresponding to the lowest eigenvalue of J (cmp. Sec. 2.3.2). As the eigenvector
is only defined up to a scaling factor, the range flow is finally computed by the
normalization (see (3.15)) ⎛

⎝ U
V
W

⎞
⎠ =

1

b4

⎛
⎝ b1

b2
b3

⎞
⎠ . (3.18)

3.3 Affine Model

Scharr and Küsters [57] introduced a multi-camera extension of the brightness
constancy constraint model for simultaneous local estimation of 3D motion and 3D
position. This model has been extended and evaluated for 4 special cases: estimation
of depth only using 1D and 2D camera grids, estimation of depth and 3D motion, and
estimation of depth and normals in Scharr [55]. Scharr and Schuchert [56] presented
a general framework for this Affine Model. However, in [56] the model is restricted
to surfaces inclined in only one direction, i.e., surface normal n = (ZX , 0,−1)T or
n = (0, ZY ,−1)T. We derive a model handling arbitrarily inclined surfaces and a
simultaneous estimation technique for all parameters.
An image sequence can be interpreted as data in a 3D x-y-t-space. For optical flow
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3 Approaches to 3D Motion Estimation

estimation in this space a BCCE defines a linear model for the changes of gray values
due to local object motion. The result of the calculation is a displacement vector
field. Assuming the data comes from a single fixed camera displacements come
from object motion. Assuming a pinhole camera looking at a fixed scene, moving
orthogonal to its viewing direction, displacements (then usually called disparities)
are anti-proportional to local depth. This is known as structure from camera motion
(e.g., [43]).
The basic idea for this estimation technique is to interpret camera position s = (sx, sy)
as additional dimensions of the data. Hence all image sequences acquired by a 1D
camera grid can be combined to sample a 4D-Volume in x-y-sx-t-space. If a 2D
camera grid is used (as e.g., in [45, 77]) we get a 5D-Volume in x-y-sx-sy-t-space.
Brightness constancy can be defined in this space as vanishing total differential of
the intensity data. A camera model is used to project a dynamic surface patch into
the image. This yields equations for x- and y-position of the patch as a function of
camera position and time. Plugging the linearized total differentials of x and y into
the total differential of the intensity results in the sought model. It boils down to
be an affine optical flow model with 3 dimensions (sx, sy, t) behaving like the time
dimension in an usual affine optical flow model (cmp. (2.6) in Sec. 2.1). A detailed
derivation can be found below in Sec. 3.3.1.
As this linear data model has the same form as usual BCCEs (cmp. Sec. 2.1) no
special estimation framework has to be established. We use the structure tensor
method (cmp. Sec. 2.3.2 and Sec. 3.3.2), but other methods can be applied as well
(e.g., the ones in [4, 26]). But as parameters in the model are mixed motion-, normals-
and disparity-parameters, they have to be disentangled. Especially when 2D camera
grids are used multiple independent measurements are present in each model equation.
These not only have to be disentangled, but also recombined respecting their error
estimates (cmp. Sec. 3.3.2).

3.3.1 Derivation of the BCCE

In this section we derive a constraint equation describing local brightness changes
in the data. To do so we project a geometric model of a moving surface patch onto
a camera sensor plane using a pinhole camera model. This geometric description
of moving projected surface elements is then combined with a brightness constancy
assumption forming the sought constraint equation.

Surface Patch Model

For each pixel at a given point in time we want to estimate from a local neighborhood
depth, motion and surface normals of a 3D patch imaged at that location. Thus
we use a surface patch valid for the whole neighborhood as object/motion model.
This surface element has its center at world coordinate position (X0, Y0, Z0) and is
modeled as a function of time t and local world coordinates (ΔX,ΔY ) with X- and
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Figure 3.1: Pinhole projection of a point P using a camera with center at (sx, sy).

Y -slopes ZX and ZY . It moves with velocity U = (UX , UY , UZ)
T:⎛

⎝ X
Y
Z

⎞
⎠ =

⎛
⎝ X0 + UXΔt+ΔX

Y0 + UYΔt+ΔY
Z0 + UZΔt+ ZXΔX + ZYΔY

⎞
⎠ . (3.19)

The surface normal is then n = (ZX , ZY ,−1)T. Velocity U could be further modeled
using translation and rotation for rigid patches (cmp. Chap. 5) or using an affine
transform for deformable patches. We omit this step here for simplicity.

Camera Model

We use a pinhole camera at world coordinate position (sx, sy, 0), looking into Z-
direction (cmp. Fig. 3.1) (

x
y

)
=

f

Z

(
X − sx
Y − sy

)
(3.20)

where x and y are sensor coordinates and camera position space is sampled equidis-
tantly using a camera grid.
A local neighborhood for parameter estimation is defined using neighboring pixels.
However, we are interested in the local neighborhood given on the 3D surface patch
by means of ΔX and ΔY . We therefore need to derive a relation between local 3D
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3 Approaches to 3D Motion Estimation

coordinates ΔX and ΔY and local sensor coordinates Δx and Δy. To do so we solve
the pinhole camera model (3.20) of the central camera, i.e., sx = sy = 0, for a 3D
point (X, Y, Z) and substitute Z = Z0,0/(1− ZX

x0

f
− ZY

y0
f
) with depth Z0,0 at the

principal point (x, y) = (0, 0) (cmp. [23]). We get⎛
⎝ Xx0,y0

Yx0,y0

Zx0,y0

⎞
⎠ =

Z0,0

f

⎛
⎝ x0

y0
f

⎞
⎠ 1

1− ZX
x0

f
− ZY

y0
f

(3.21)

with (x0, y0) being the pixel coordinates where (X, Y, Z) is projected to. Assuming
local coordinates ΔX constant in time, the total differential of X is given by

ΔX =
∂X

∂x
Δx+

∂X

∂y
Δy . (3.22)

Inserting (3.21) in (3.22) yields

⎛
⎝ ΔX

ΔY
ΔZ

⎞
⎠ =

Z0

fcx0,y0

⎛
⎜⎜⎝

(
1− ZY

y0
f

)
Δx+ ZY

x0

f
Δy(

1− ZX
x0

f

)
Δy + ZX

y0
f
Δx

ZXΔx+ ZYΔy

⎞
⎟⎟⎠ (3.23)

with
cx,y = 1− ZX

x

f
− ZY

y

f
(3.24)

and local neighborhood operators Δx = x− x0 and Δy = y − y0 on the image plane.
In the case of a fronto-parallel surface, i.e., ZX = ZY = 0, (3.23) boils down to⎛

⎝ ΔX
ΔY
ΔZ

⎞
⎠ =

Z0

f

⎛
⎝ Δx

Δy
0

⎞
⎠ . (3.25)

There neighboring points in ΔX and ΔY directions are projected independent of each
other and of the pixel position (x0, y0) onto the image plane. Figure 3.2 demonstrates
the difference between projection of a fronto-parallel surface and a sloped surface.

Brightness Change Model

Using a camera grid means sampling (sx, sy)-space using several cameras each of
which acquires an image sequence. We combine all of these sequences into one 5D
data set sampling the continuous intensity function I(x, y, sx, sy, t), i.e., intensity
lives in a 5D space. We assume that the acquired brightness of a surface element is
constant under camera translation, meaning we are looking at a Lambertian surface.
In addition this brightness shall be constant in time, i.e., we need temporally constant
illumination, which can be relaxed easily using the approach shown in Chap. 4. We
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Figure 3.2: Pinhole projection of a patch. Left: fronto-parallel surface, right: Surface
not fronto-parallel. We selected huge pixel sizes to demonstrate the effect.

see that brightness is constrained in one temporal and two spatial coordinates. In
other words there is a 3D manifold in our 5D space in which I does not change. Thus
the total differential dI vanishes in this manifold. The brightness model therefore is

dI = Ixdx + Iydy + Isxdsx + Isydsy + Itdt = 0 . (3.26)

Please note that all derivatives and differentials in this equation have physical units.
Image coordinates x and y are given in pixel, i.e., the physical length of a sensor
element on the camera chip, typically several μm. Camera coordinates sx and sy are
given in camera to camera displacements and time t normalized to frames (depending
on the measurement that is typically a fraction of seconds or minutes). This is
important when interpreting parameters estimated from the model equations.

Combination of the 3 Models

In order to derive a single linear equation from the above models, we first project
the moving surface element (3.19) to the sensor plane using a pinhole camera (3.20)(

x
y

)
=

f

Z

(
X0 + UXΔt+ΔX − sx
Y0 + UYΔt+ΔY − sy

)
. (3.27)

Consequently we can calculate the differentials dx and dy for a fixed surface location
(i.e., for constant ΔX and ΔY cmp. Sec. 3.3.1)(

dx
dy

)
=

f

Z

(
(UX − UZ

x
f
)dt − dsx

(UY − UZ
y
f
)dt − dsy

)
. (3.28)
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This equation is nonlinear in the sought 3D parameters. From (3.19) we know that

Z = Z0 + UZΔt+ ZXΔX + ZYΔY
= Z0 + UZΔt+ Z0

fc
(ZXΔx+ ZYΔy) .

(3.29)

We linearize (3.29) via the assumption that UZΔt is small compared to the overall
depth |Z0| 	 |UzΔt| and omit UZΔt in the denominator. Further we can approximate

f

Z
≈ f

Z0

− ZX

Z0c
Δx− ZY

Z0c
Δy (3.30)

assuming |ZXΔx/(fc) + ZYΔy/(fc)| � 1 . This is usually well fulfilled for not too
large slopes, i.e., ZX and ZY smaller than 5 corresponding to a slope of approximately
80◦ degrees, and normal angle lenses because then c ≈ 1 and Δx � f . In our Sony XC-
55 camera pixel size is 7.4μm and focal length f = 12.5mm, i.e., nΔx/f ≈ n0.6 · 10−3

for the nth neighbor pixel.
Plugging (3.30) into (3.28), using local coordinates x = x0 +Δx and y = y0 +Δy,
sorting by differentials and Δ-terms, and ignoring higher order Δ-terms we get

dx =
f

Z

[(
UX − x

f
UZ

)
dt − dsx

]

=
f

Z0

(
UX − x0

f
UZ

)
dt

−
[
ZX

Z0c

(
UX − x0

f
UZ

)
+

UZ

Z0

]
Δxdt

−
[
ZY

Z0c

(
UX − x0

f
UZ

)]
Δydt

− f

Z0

dsx +
ZX

Z0c
Δxdsx +

ZY

Z0c
Δydsx

(3.31)

and

dy =
f

Z

[(
UY − y

f
UZ

)
dt − dsy

]

=
f

Z0

(
UY − y0

f
UZ

)
dt

−
[
ZX

Z0c

(
UY − y0

f
UZ

)]
Δxdt

−
[
ZY

Z0c

(
UY − y0

f
UZ

)
+

UZ

Z0

]
Δydt

− f

Z0

dsy +
ZX

Z0c
Δxdsy +

ZY

Z0c
Δydsy .

(3.32)
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We may now rename the mixed 3D parameters in (3.31) with

dx = uxdt + a11Δxdt + a12Δydt

+ νdsx + b1Δxdsx + b2Δydsx
(3.33)

and (3.32) with
dy = uydt + a21Δxdt + a22Δydt

+ νdsy + b1Δxdsy + b2Δydsy .
(3.34)

Substituting (3.33) and (3.34) into the brightness change model (3.26) we get the
sought affine optical flow-like model for dynamic surface reconstruction

∇I

[(
uxdt + νdsx
uydt + νdsy

)
+

(
a11dt + b1dsx a12dt + b2dsx
a21dt + b1dsy a22dt + b2dsy

)(
Δx
Δy

)]

+Isxdsx + Isydsy + Itdt = 0 .

(3.35)

We observe that the components of this model are known from the standard affine
model (2.6) for optical flow, i.e., translations ux, uy, and affine components a11, a12,
a21, and a22 in the well known form [18]. Further there are disparity ν and its affine
parameters b1 and b2 representing the projections of slopes ZX and ZY . They may
be grouped into two affine optical flow like submodels for depth estimation, i.e., one
submodel for each camera displacement direction.
For a 2D camera grid both depth-submodels, i.e., the submodel with terms containing
dsx and the one containing terms with dsy are present. When only a 1D camera
grid is available, say oriented in sx-direction, then terms containing dsy can not be
evaluated and are removed by setting dsy = 0. In the remainder of this work we call
models operating on data of a 2D camera grid a 2D model, the ones referring to a
1D camera grid 1D models.

Local Equations for Flow Components

We can now derive the equations connecting flow components with surface patch
parameters for the three ”time”-like dimensions dt , dsx and dsy . Flow parameters
coming with dt are

ux = f
Z0

(
UX − x0

f
UZ

)
uy = f

Z0

(
UY − y0

f
UZ

)
a11 = −ZX

Z0c

(
UX − x0

f
UZ

)
− UZ

Z0
a21 = −ZX

Z0c

(
UY − y0

f
UZ

)
a12 = − ZY

Z0c

(
UX − x0

f
UZ

)
a22 = − ZY

Z0c

(
UY − y0

f
UZ

)
− UZ

Z0

(3.36)
The ones coming with dsx or dsy are

ν = f
Z0

, b1 =
ZX

Z0c
and b2 =

ZY

Z0c
. (3.37)
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All patch parameters are evaluated at a fixed pixel position and point in time.

3.3.2 Parameter Estimation

In this section we present a way to solve for the parameters using two standard least
squares estimators. We will start by estimating affine flow parameter vectors based
on the structure tensor method (cmp. Sec. 2.3.2). Linear combinations of the solution
vectors are used to disentangle depth and motion parameters. When using a 2D
camera grid, estimates of depth and surface normals are combined according their
covariance matrices. Finally motion parameters are estimated from affine motion
parameters and 3D structure via least squares.

Estimation via Structure Tensor Method

In this parameter estimation method a model with linear parameters pj has to be
given in the form dTp = 0 with data depending vector d and parameter vector p
(cmp. Sec. 2.3.2). Equation 3.35 is of this form when identifying

d = (Ix, Iy, IxΔx, IxΔy, IyΔx, IyΔy, Isx , Isy , It)
T

p = (uxdt + νdsx , uydt + νdsy , a11dt + b1dsx , a12dt + b2dsx ,

a21dt + b1dsy , a22dt + b2dsy , dsx , dsy , dt )
T .

(3.38)

The parameters for using a 1D camera grid oriented in sx-direction are obtained by
setting dsy = 0

d = (Ix, Iy, IxΔx, IxΔy, IyΔx, IyΔy, Isx , It)
T

p = (uxdt + νdsx , uydt , a11dt + b1dsx , a12dt + b2dsx ,

a21dt , a22dt , dsx , dt )
T .

(3.39)

For standard optical flow the null-space is 1D, here it is 2D or 3D, depending on the
model used. Therefore solution vectors are combined to find a minimum solution
vector for the flow in the corresponding direction, i.e., dt , dsx or dsy .

Solving for Flow Components

For our models the solution space of (2.17) is spanned by eigenvectors p̃i of J (where
i ∈ {1, 2} using a 1D camera grid or i ∈ {1, 2, 3} using a 2D camera grid). The
components (p̃i)j of these eigenvectors always represent two flow components (cmp.
(3.38)), one depending on time and coming together with dt and the other depending
on a camera displacement direction (dsx or dsy ).

We solve for time depending flow parameters (ux, uy, a11, a12, a21, a22) by linearly
combining solution vectors p̃i such that dt = 1 and dsx = dsy = 0, where dsx , dsy ,
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and dt are components 9 to 11, respectively. Components 1 to 8 of the resulting
vector then correspond to ux, uy, a11, a12, a21, and a22 respectively.

When using a 1D camera grid dsy already vanishes and we only need to linearly
combine solution vectors p̃i such that dt = 0 and dsx = 1. Depth related flow
parameters ν, b1, b2 then correspond to components 1, 3, and 4, respectively.

When using a 2D camera grid, 2 linear independent eigenvectors with dt = 0
can be derived. One with dsx = 1 and dsy = 0, and the other with dsx = 0 and
dsy = 1. Thus we could estimate v, b1, and b2 from either of the 2 eigenvectors, but
unfortunately the two estimates for each flow parameter are neither identical, nor
independent. This becomes clear considering the following example. Assume our
cameras are looking at a striped pattern oriented in y-direction, i.e., parallel to sy.
Then a 1D camera grid shifting along x-direction will easily determine depth from
disparity ν, but a camera grid shifting along y-direction suffers from the aperture
problem and can not determine depth. A 2D camera grid also can only resolve
depth from its sx-movement, but not from sy-movement. In this example the two
estimates are independent. Now think of a striped pattern not oriented along x- or
y-direction. The two ν-estimates are now coupled and we need to combine them
according to their error covariance matrix C. We do so by calculating C following
Nestares and Fleet [46], and rotating the representation of sx-sy-space such that C
becomes diagonal (cmp. Fig. 3.3a). Then the resulting single estimate for ν is a sum
of the independent estimates weighted by the inverse of their individual errors

ν =
ν1e1 + ν2e2
e1 + e2

(3.40)

where ν1 and ν2 are the two independent disparity estimates and errors e1 = C−0.5
11

and e2 = C−0.5
22 with diagonal entries C11 and C22 of the diagonalized covariance

matrix C.
Scharr [55] demonstrates the advantages of this approach. On the one hand this

approach solves the aperture problem in one camera displacement direction. In this
case the error of one estimate becomes infinity and is therefore neglected. On the
other hand the estimation accuracy slightly improves, because two estimates are used
instead of one. Figure 3.3b shows a histogram of disparities νx, νy and ν estimated
from a synthetic, sinusoidal test pattern with 10% Gaussian noise added (true value
ν = 1). Although there is no aperture problem and the same data has been used for
all 3 estimates the histogram of ν (solid line) has less variance than the other two
curves.

Disentangling Surface Patch Parameters

Disentangling the flow parameters into parameters describing the local surface patch
means solving the nonlinear system of (3.36) and (3.37). We have 6 unknowns
(UX , UY , UZ , Z0, ZX , ZY ) and one equation per estimated flow component, i.e., 12
constraints. We have an overdetermined system of equations and consequently some
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Figure 3.3: Estimation of multiple occurring parameters from [55]. a: Rotation
of coordinate system by error covariance. νx and νy are the estimates for camera
displacement in sx- and sy-direction, respectively. b: Accuracy gain by combination
of the estimates.

choices how to solve it.
The first step is solving for depth and normals. From the estimates for the flow

components ν, b1 and b2 (cmp. Sec. 3.3.2) and (3.37) and (3.24) we first derive Z0

using Z0 = f/ν and then solve for ZX , ZY , and c. Focal length f has to be known,
e.g., from a calibration step.

The second step is solving for motion components. To do so we substitute (3.37)
into (3.36) and get

ux = −ν
(
UX − x0

f
UZ

)
uy = −ν

(
UY − y0

f
UZ

)
a11 = −b1

(
UX − x0

f
UZ

)
+ νUZ

f
a21 = −b1

(
UY − y0

f
UZ

)
a12 = −b2

(
UX − x0

f
UZ

)
a22 = −b2

(
UY − y0

f
UZ

)
+ νUZ

f

(3.41)

Equation 3.41 may be solved using any linear estimator, e.g., least squares or total
least squares as proposed in Sec. 2.3. We use standard least squares.

3.4 Experiments

In this section we compare performance of Scene Flow, Range Flow and the 1D and
2D camera grid model for simultaneous estimation of motion, depth and normals
(Affine Model). First we analyze estimation of depth and normals using the Affine
Model proposed in Sec. 3.3. Estimates of 3D structure and (affine) optical flow are
then used as input data for the motion estimation techniques. We show experiments
on sinusoidal patterns for evaluation of systematic errors. A rendered sequence
showing a moving cube is used to test performance under more realistic conditions
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and with ground truth available. Estimation results on plant leafs demonstrate the
performance of the models on real data.

3.4.1 Sinusoidal Pattern

In the first experiment we compare the influence of the additional estimation of
normals to the other parameters in the 1D case (via (3.39)) using synthetic data.
In a second experiment we test the benefit of a 2D camera grid (3.38) compared to
the 1D camera grid (3.39). The estimated 3D structure is then used to compare the
motion estimation techniques.

3D Structure

Scharr [55] investigated properties of basic elements of the Affine Model with respect
to filter choices, linearization effects, and noise influence. We use the results here by
choosing 5 cameras, i.e., sampling points in sx, for the 1D grid and 5× 5 cameras for
the 2D grid, because the sx- and sy-derivatives can be calculated with low systematic
error with the filter-sets proposed in [54] (cmp. Sec. 2.2). Noise increases the absolute
error of the estimated components of the parameter vectors in the structure tensor.
Thus image sequences should be acquired such that the estimable signal is maximal.
Especially absolute values of displacements, i.e., optical flow components ux and uy

as well as disparity v, should be as large as possible. For reasonable camera distances
in the grid disparity is much larger than 1 pixel. Therefore we define a working
depth with an integer disparity ν0 and preshift our data in sx- and sy-directions such
that this disparity becomes zero. Then we can estimate disparity reliably in a depth
interval around the working depth, where extremal disparities should not exceed
±1 pixel. We select our acquisition configuration accordingly. Please note that this
restriction is not inherent to the model but is due to the use of the structure tensor
and can be relaxed using warping or multi-scale estimators (see e.g., [14, 49]).

As synthetic data we calculate sinusoidal patterns with the Sequence Generator
presented in App.B. Two example intensity images and the corresponding depth
maps can be found in Fig. 3.4.

1D Grid with and without Normals In order to show the influence of the
additional estimation of surface normals in the 1D camera grid model, we generate
noise free, synthetic sinusoidal images (see above) with varying ZX . The other
parameters were set to λx=λy=λ, α=0◦, Z0=100 mm, f=10mm, ZY=0 and width of
pixels is 7.4μm. From these sequences with and without additive Gaussian noise we
estimate local depth Z for both 1D grid models, and ZX for the model additionally
handling surface normals. The respective plots can be found in Fig. 3.5 and Fig. 3.6.
There ZX is given in degrees, i.e., ZX [

◦]= arctan(ZX). Looking at Fig. 3.5 we observe
that left and right plots are almost identical. Thus the model with the normals
performs as stable as the simpler model without normals. This coincides with
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a b c d

Figure 3.4: Sinusoidal images for the central camera sx=sy=0, origin (X0, Y0) in
the image center, no motion, Z0=100 mm, f=10 mm, ZY=0 using a: λx=λy=16
pixel=0.1184 mm, α=0◦, ZX=1.73=̂60

◦ and c: λx=8 pixel, λy=80 pixel, α=30◦,
ZX=1=̂45◦. b and d are the corresponding ground truth depth maps.
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Figure 3.5: Comparison of 1D camera grid models. Relative errors from sinusoidal
images. Left: model without normals, right: model with normals. a and b: noise
free data, c and d: 2.5% Gaussian noise added.

experiments in Sec. 2.3. There we have seen that an affine optical flow model, i.e.,
the model with normals, may outperform a standard optical flow model, i.e., the
model without normals. Here we are looking at disparity estimates and very small
affine motions (b1 = 0.0001 and ν ≈ 0.27, cmp. (3.37)). The improvements due
to the Affine Model are therefore not visible. In the case of noise free synthetic
data, estimates are better for larger wavelengths. For noisy data the influence of
the wavelength is negligible. Figure 3.6 demonstrates that the absolute error of the
estimated ZX is in the range of 0.001◦ to 0.01◦ in the noise free case and in the range
of 0.01◦ to 10◦ when 2.5% Gaussian noise is added to the data.
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Figure 3.6: 1D camera grid model with normals. Absolute errors of normals calculated
from sinusoidal images. a: no noise, b: 2.5% Gaussian noise.

a b c d e

Figure 3.7: a–d: Input patterns with different orientations (α ∈ [0, 30, 60, 90]◦

degrees), and e: gray-value coded depth map.

1D Grid versus 2D Grid The benefit of a second camera-shift direction is
expected to lie in the reduction of a potential aperture problem. This means, looking
at a strongly oriented pattern, a 1D camera grid can not resolve, e.g., depth if the
pattern is oriented along the sx-axis. A 2D camera grid should not encounter this
problem as depth can be estimated easily in the camera direction normal to the
pattern orientation. To test this behavior we generate noisy (σn=2.5%) and noise
free sinusoidal patterns with λx=8 pixel, λy=80 pixel and varying orientation angle
α. The other parameters are fixed to be Z0=100 mm, f=10 mm, ZY=1=̂45◦, ZX=0.
Figure 3.7 shows the four different surface patterns and the gray value coded depth
map. From these sequences we estimate local depth Z, and surface slope ZY and
tabulate their standard deviation (see Tab. 3.1).

For the standard deviations we observe that the 1D grid model performs worse for
rotated patterns with α = 30◦ and α = 60◦ in the noise free case. The estimation of
ZY is more sensitive (its a first order derivative), therefore the errors of ZY are even
higher. In the noisy data case the aperture problem becomes more clearly visible
in the 1D model: estimation of Z0 gets worse for increasing α, ZY is not estimable.
The 2D model still gives Z0 reliably, ZY has a high but limited variance.

3D Motion

For systematic error analysis of motion estimates and comparison of the different
motion models, we generate image sequences showing a moving surface patch with
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Table 3.1: Comparison 1D and 2D camera grid. Standard deviations calculated from
sinusoidal images. Standard deviations which are significantly higher for the 1D
model than for the 2D model are marked red.

α noise
Z0: std. dev. [mm] ZY : std. dev. [

◦]

1D 2D 1D 2D

0◦ 0% 0.104 0.104 0.35 0.29
30◦ 0% 0.119 0.108 5.40 0.23
60◦ 0% 0.140 0.108 5.37 0.11
90◦ 0% 0.128 0.104 0.001 0.01

0◦ 2.5% 0.44 0.43 28.1 26.9
30◦ 2.5% 2.07 0.41 70.1 24.9
60◦ 2.5% 2.80 0.31 73.3 17.9
90◦ 2.5% 3.71 0.32 76.7 19.1

a sinusoidal pattern. The parameters of the surface patch are: Z0 = 100 mm,
ZX = 0.6=̂30.96◦, ZY = 0.5=̂26.56◦, UX = 0.00733 mm/frame, UY = −0.00367
mm/frame and UZ = 0.06 mm/frame. As we use a simple total least squares estima-
tor we kept the optical flow values well below 1 pixel/frame to avoid errors coming
from the estimator. The synthetic sensor contains 501×501 pixels with width 4.4μm.
The focal length of the projective camera is set to f = 12 mm.
We compare the performance of the models for surface patches with different inclina-
tions and velocities. Furthermore we investigate the effect of additive Gaussian noise
with increasing standard deviation σn, and of two baselines with d1 = 0.01 mm (near
baseline) and d2 = 0.5 mm (wide baseline). Near baseline needs no preprocessing
of the input sequences as the optical flow between camera positions is smaller than
1 pixel. For wide baseline we shift the input sequences in camera displacement
direction towards the central camera to get the smallest image motion for the central
pixel (here we have a preshift of 14 pixel). Due to this preprocessing the effective
image size is cropped to 301× 301 pixel. For our analysis we compare the average
angular error (App.A) for 3D motion estimates over all pixel N at a minimum
distance of 70 pixel from the nearest image border. To reduce systematic errors we
use the optimized 5× 5× 5 filter sets presented in [54] and a 3D structure tensor
weighting matrix W with spatio-temporal size of 65 × 65 pixel and 5 frames and
standard deviation of σW = 19 in space and σW = 1 in time direction. Figure 3.8
shows average angular errors for increasing UZ , ZX , and σn for both near (left) and
wide (right) baselines. For increasing depth motion UZ and near baseline, errors of
the Affine Model and Scene Flow are up to one order of magnitude lower than errors
of Range Flow. For wide baseline only errors of the Affine Model increase. Errors
of the other models stay in the same range as for near baseline. In case of large
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Figure 3.8: Average angular error versus UZ (top), ZX (central) and σn (bottom) for
near (left) and wide (right) baseline.

slopes (up to approx. ZX = 75◦ degrees) a near baseline setup yields more reliable
estimates compared to wide baseline setups using Scene Flow or the Affine Model.
For increasing noise and near baseline the Affine Model outperforms Scene Flow and
Range Flow by one order of magnitude. Using a wide baseline, errors of Scene Flow
and Range Flow are reduced by one order of magnitude. The errors for the Affine
Model are similar for both baselines.

For near baseline the Affine Model and Scene Flow perform significantly better
than Range Flow. For wide baseline Scene Flow yields estimates with lowest errors

49



3 Approaches to 3D Motion Estimation

a b c

Figure 3.9: Synthetic cube sequence. a and b: Images taken from first and last
camera. c: 3D reconstruction with surface normals.

in all cases. Compared to near baseline, the Affine Model yields worse results for
increasing UZ . Range Flow estimates are better in all cases for wide baseline than
for near baseline.

3.4.2 Synthetic Cube

In order to test estimation of 3D structure, surface normals and motion on more
realistic data with ground truth available, we rendered a cube covered with a constant
noise pattern using POV-Ray [15]. Illumination remains constant for all camera
positions and time frames to fulfill the brightness constancy constraint. We use a 3D
structure tensor weighting matrix W with spatio-temporal size of 65× 65 pixel and
5 frames and standard deviation of σW = 19 in space and σW = 1 in time direction.
The size of the sequence is 640× 480 pixel and we render data for 5 cameras with a
displacement of 5 mm. The baseline results in a preshift of 14 pixel. The cube is
rotated by 60◦ degrees and moves with UX = −0.2 mm/frame, UY = 0 mm/frame and
UZ = −2 mm/frame. Figure 3.9 shows two images of the cube sequence and estimates
of depth and normals rendered with POV-Ray [15]. The two images in Figs. 3.9a
and b are from the first and last camera for t = 0. The images are preshifted, so that
disparity is smaller than 1 pixel per camera displacement. Figure 3.9c demonstrates
high accuracy of depth and surface slopes estimates. The border of the cube pointing
towards the camera grid is smoothed, because of the large smoothing filter W in
the standard structure tensor method. A robust estimator like the one presented
in Sec. 2.3.4 could reduce this smoothing effect. Figures 3.10a and b show two time
frames of the cube sequence from the central camera. The ground truth motion
is depicted in Fig. 3.10c. Velocity and depth estimates of the proposed models are
compared in Figs. 3.10d-f. For comparison of the models, errors are amplified by 100
in UX-and UY -directions and 10 in UZ-direction. Scene Flow estimates the motion
best. Near the right border of the cube velocity UZ is underestimated. Velocity
estimates of Range Flow are distorted at all borders of the cube. Moreover estimates
on the left side of the cube are less accurate than Scene Flow. The Affine Model
yields more smooth estimates than Range Flow, but at the borders and on the left
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a b c

d e f

Figure 3.10: Motion estimation of cube moving towards camera. a and b: First
and last image taken with central camera. c: Ground truth motion. d–f: Scaled
motion estimates with amplified errors for the models Scene Flow, Range Flow and
the Affine Model are depicted, respectively.

side worse results than Scene Flow. A robust estimator may improve estimation
results at borders. Range Flow is more sensible to borders, because it incorporates
derivatives of estimated depth sequences, which already suffer from border problems.

3.4.3 Plant Sequences

In this work the main focus is on plant leaf motion estimation. We show experiments
on two different plants, namely Kalanchoe and Castor Oil Plant (Ricinus).

Kalanchoe

The input sequence contains images of 49 camera positions, i.e., a 7 × 7 camera
grid with 0.5 mm camera displacement. Figure 3.11a and b show an image of the
central camera and depth estimates rendered by POV-Ray [15]. The rendered view
demonstrates that positions and surfaces of leafs are well reconstructed. Large
smoothing filters (W has spatial size 128 × 128 with σW = 37) have been used,
because structures on the leafs are rare. This leads to strong smoothing of the 3D
reconstruction. Structure of small leafs in the center of the plant cannot be estimated.
Figure 3.11c and d show a close-up view of the large leaf positioned in the lower
part in Fig. 3.11a. The rendered view and estimated surface slopes are depicted in
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a b

c d

Figure 3.11: Reconstruction of plant using 49 camera positions. a: central image
of input sequence, b: rendered depth estimates, c: close-up view on leaf and d:
estimated depth with surface slopes

Fig. 3.11d. Estimated normals fit to the recovered structure of the leaf. The bump
in the lower part of the leaf is clearly visible.

Castor Oil Plant

We are interested in motion estimation of plant leafs. Figure 3.12a shows one image
of a Castor Oil plant leaf under lab conditions. A close up view of the region marked
by the white rectangle is depicted in Fig. 3.12b. The scene is illuminated by directed
infrared light emitting diodes from the top right causing shadows on the leaf of
interest. A camera grid with 9 cameras is replaced by a camera on a moving stage.
This is feasible because movement of the plant is negligible during acquisition time
of approx. 30 seconds. Furthermore this virtual camera grid allows very small
camera displacements, which are not realizable with real cameras. Here the camera
displacement is 4 mm. Depth of the leaf is around Z0 = 250 mm and its surface
size is approx. 15× 35 mm. For motion estimation, a sequence of nine frames with
a sampling rate of one frame per 2 minutes was taken, i.e., acquisition time for all
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a b

c

Figure 3.12: Castor Oil Plant sequence. a: Full size image taken with central camera.
b: Close up view of plant leaf denoted by white rectangle in a. c: 3D reconstruction
and surface slopes of plant leaf.

images was 16 minutes. We use a 4D structure tensor weighting matrix W with
size of 77× 77 pixel and 5 images in time and camera displacement direction and
standard deviation of σW = 23 in space and σW = 1 in time and camera displacement
direction. The unfolding leaf rotates around the node where it is attached to the
stem. This results in a visible motion towards the camera and to the right while
the shadow area caused by the top leaf decreases. Depth and normal estimates are
depicted in Fig. 3.12c. Depth estimates seem to recover the true structure quite well.
Estimated normals clearly show the curves of the leafs, but seem to be distorted at
borders, especially at the right end of the leaf. There inclination of the leaf is very
high and structures are too small to be estimated reliably. Figure 3.13 depicts three
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a b

c d

e f

Figure 3.13: Castor Oil Plant sequence. Left: Three images taken with central
camera. Right: Motion estimates for models Scene Flow (b), Range Flow (d) and
the Affine Model (f) are depicted, respectively.

time frames of the Castor Oil Plant sequence (left side) and motion estimates of
the three models (right side). Scene Flow best estimates motion of the leaf. In the
upper part of the leaf, where brightness changes occur estimates are distorted. As
expected for an almost rigid motion, which can be assumed because of the relatively
high temporal resolution, we obtain a smoothly varying vector field. Range Flow
suffers more from brightness changes and estimates at borders are heavily distorted.
This effect coincides with Range Flow estimation results near borders in the cube
sequence (Sec. 3.4.2). The Affine Model yields heavily corrupted estimates. This
effect does not coincide with the results on the cube sequence. The main causes of
the poor performance of the Affine Model may depend on its sensitivity to brightness
changes and its surface patch model, which handles only translational motion.
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Table 3.2: Comparison of motion estimation approaches

Scene Flow Range Flow Affine Model

estimated
3D motion 3D motion

3D structure
parameters & motion

input for
all cameras central camera all cameras

intensity data

input for central
all time points all time points

depth data time point

3.5 Conclusions

In this chapter we described three optical flow based approaches for 3D motion
estimation. The Affine Model is also capable of structure estimation. The three
models use different sources and models for motion estimation. A comparison of
these sources is depicted in Tab. 3.2. The main goal of all methods is to use 2D
optical flow to estimate 3D motion. Whereas pure 3D motion in X- and Y -direction
may be easily explained by optical flow estimates, motion estimation in Z-direction
is not uniquely defined by 2D optical flow estimates only. Therefore the 3D motion
estimation approaches incorporate additional constraints to solve for 3D motion.
Scene Flow combines optical flow estimates in all cameras with depth data for t = 0
to estimate 3D motion. On the other hand Range Flow combines optical flow in
the central camera with the change in depth data seen in this camera. The Affine
Model uses information of optical flow in the spatial neighborhood (e.g., divergence)
to solve for 3D motion.
However, Scene Flow and Range Flow use two separate estimators for depth and flow
estimation, i.e., depth data is estimated independent from optical flow. The Affine
Model combines both estimation processes in one parameter estimation and solves
then for motion in time or camera displacement by combining solution vectors of this
parameter estimation. The benefit of this estimation approach is that all available
input data influences estimation of the parameters, whereas the other approaches
use only subsets of the data (cmp. Tab. 3.2). The general structure of Scene Flow
and the Affine Model are quite similar. First optical flow components and depth are
derived. In a second step these parameters are explained by 3D parameters. The
difference is that Scene Flow incorporates information of translational optical flow,
i.e., two parameters, of different cameras, whereas the Affine Model is based on more
than two optical flow parameters in the central camera.
Synthetic experiments on sinusoidal patterns, the synthetic cube sequence and on
plant leaf sequences showed that estimation of depth and slopes with the Affine
Model yields reliable results for 1D and 2D camera grids. In the experiments we
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compared the 1D model without normals from [55] to the full model. All parameters
can be estimated as well or better with the full model. The additional parameters
do not lead to instabilities. In addition the 2D model is more robust with respect to
the aperture problem.
Scene Flow yields best 3D motion estimates for wide baseline setups. Sinusoidal
experiments showed that for small baselines estimation accuracy of the Affine Model
is comparable to the accuracy of Scene Flow. In case of noisy data and small baselines
the Affine Model clearly yields best results. Estimates using Range Flow have highest
accuracy only for special cases, e.g., fronto-parallel surface or no depth motion for
wide baseline setups.
Experiments on the synthetic cube sequence and on plant sequences confirmed results
from the sinusoidal sequences. In addition experiments on the plant leaf sequence
showed that Scene Flow is quite robust to brightness changes, although it is based on
the brightness constancy constraint. Estimates of Range Flow and especially of the
Affine Model are highly corrupted by brightness changes. The Affine Model seems to
be more sensitive to the rotational motion of the leaf. This may come from model
assumptions of translating surface patches. We conclude that Scene Flow works best
on real data and is less sensitive in regions where the brightness constancy constraint
is not fulfilled. However, in order to get more reliable estimates we have to derive
a new approach to handle brightness changes in the data which do not come from
motion. This will be addressed in the following chapter.
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Chapter 4

Modeling Brightness Changes

Motion estimation approaches as presented in the previous chapter yield good results
for objects under homogeneous, diffuse illumination. Problems occur for directed,
inhomogeneous illumination, because the brightness constancy constraint (2.3) is
not sufficiently well satisfied anymore. A setup for Range Flow may include an
illumination independent range sensor, such as a laser range sensor. This means
the range constraint is still fulfilled. However, range data estimated by a structure
from motion approach may also be corrupted. In this chapter we present different
approaches to handle illumination changes. First we focus on prefiltering the intensity
data, in order to reduce brightness changes coming from changing illumination. Then
we will present two brightness constraints, which are more robust to brightness
changes compared to the brightness constancy constraint (see (2.3)), and one novel
constraint, which models brightness changes based on reflectance physics. In the
second part of this chapter we will integrate these constraints in Range Flow and
in the Affine Model and show experimental results for different combinations of
prefilters and constraints. We do not explicitly test brightness handling approaches
with Scene Flow because, as showed in the previous chapter, Scene Flow is basically
a specific estimation method and therefore integration would not yield additional
insights. Finally the performance of the three models is compared on synthetic
sequences with illumination changes and we show improvements on the plant leaf
sequence.

4.1 Prefiltering

Prefiltering is a well-known technique for illumination change suppression, making
image data more or less illumination invariant.

Temporal and/or spatial highpass filtering approximately eliminates slow or low-
frequent brightness changes in the data. However, faster illumination changes in both
spatial and temporal domain still remain present in the data. In our experiments,

57



4 Modeling Brightness Changes

a b c
I(

x,
t)

-10
0

10
-2

0
2

0

5

10

x t

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

d e f

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

g h i

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

I(
x,

t)

-10
0

10
-2

0
2

0

5

10

x t

Figure 4.1: Sine wave with increasing illumination, parameter a1 = 0.1, a1,x = 0
(left), after highpass (middle) and homomorphic (right) prefiltering (lowpass with
σpre = 35). Noise added: (top) no noise, (middle) additive Gaussian noise (σn = 0.5),
and (bottom) shot noise (k = 0.5, see (4.31)).

we evaluate highpass filtering according to

Ĩ = (1l−Gσpre) ∗ I (4.1)

where Gσpre denotes a spatial Gaussian filter (see, e.g., [32]) with standard deviation
σpre, and where 1l is an identity filter whose impulse response equals one everywhere,
and where ∗ is convolution.

A more sophisticated approach uses homomorphic filtering [48, 73]. Following [73],
we briefly derive a straightforward implementation of homomorphic filtering, which
proved to be very successful in suppressing illumination changes. Homomorphic
filtering is based on modeling the image intensity I(x, y) as being determined by
illumination L(x, y) reflected towards the camera by the surfaces of the objects
present in the scene. The reflectance of the surfaces is denoted by R(x, y). Note
that in this model, both the illumination and the object reflectance are already
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projected onto the image plane, i.e., they depend on the sensor coordinates x, y. For
Lambertian surfaces, the image intensity can thus be modeled by

I(x, y) ∝ L(x, y) ·R(x, y) . (4.2)

The structure of the scene is represented by the reflectance R(x, y), from which motion
needs to be estimated. A logarithmic point transform converts the multiplicative
relation1 between illumination L and reflectance R into an additive one according to

log(I(x, y)) ∝ log(L(x, y)) + log(R(x, y)) . (4.3)

In a rough approximation, log(L) and log(R) may be considered separated in fre-
quency domain, as L(x, y) is assumed to be low-frequent (such that even its harmonics
generated by the nonlinear point transform can be neglected), while R and hence
log(R) is regarded as predominantly high-frequent such that it can be extracted by a
highpass filter. In practice, though, the two components overlap. The design of the
highpass filter thus implies a trade off between suppressing brightness changes and
loss of relevant signal. After highpass filtering, exponentiation returns an approxi-
mation of the sought reflectance component. Note that the nonlinear log-operation
turns the camera noise, which, neglecting quantum noise, is often modeled as being
signal-independent, into signal-dependent noise, which may affect motion parameter
estimation. Figure 4.1 illustrates the effects of the proposed prefilters on a 2D signal
I(x, t) with exponential temporal brightness changes. Results for linear highpass and
homomorphic prefiltering of the signal for noise-free data (top), for added Gaussian
noise (middle) and for intensity-dependent noise (bottom) are shown (see Sec. 4.4.2
for details on intensity dependent noise). Evidently, homomorphic prefiltering re-
moves all brightness changes for noise-free data, whereas highpass prefiltering only
removes signal offset. Figure 4.1f shows how the nonlinear log-operation leads to
increased noise in regions with small intensity values, especially for t < 0. If the
noise is intensity-dependent like shot noise, homomorphic prefiltering may reduce
this effect (Fig. 4.1i). A general possibility to reduce the signal dependence of shot
or quantum noise is to subject the data first to a square-root transform [2]. We will,
though, not consider this any further here.

4.2 Brightness Constraints

The brightness constancy constraint (2.3) can be replaced by an illumination invariant
or illumination insensitive constraint, which can be applied instead of or together
with prefiltering the data. In this section we present two standard and one novel
constraint.

1Note that this multiplicative relation is also preserved for cameras with a nonlinear conversion
from image irradiance to intensity, if the nonlinearity follows a γ-curve.
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4 Modeling Brightness Changes

4.2.1 The Gradient Constancy Constraint

For the estimation of optical flow, a successful such constraint is to assume that
the 2D image intensity gradient remains constant along the motion trajectory [49].
As gradient computation corresponds to derivative filtering, which is a highpass
operation, this constraint therefore attenuates illumination changes, as discussed in
Sec. 4.1. This leads to two linearized gradient constancy constraints

dI x

dt
= ∂xIxux + ∂yIxuy + ∂tIx = 0 (4.4)

dI y

dt
= ∂xIyux + ∂yIyuy + ∂tIy = 0 (4.5)

where lower indices indicate partial derivatives, e.g., Ix := ∂xI.

4.2.2 Combined Intensity and
Gradient Constancy Constraint

A known drawback of the gradient constancy constraint is that it noticeably reduces
structure in the images and leads to aperture problems. Using both the intensity
constraint and the gradient constraint simultaneously reduces this effect in optical
flow estimation [49]. Doing so leads to three constraint equations ((2.3), (4.4) and
(4.5)), which should be satisfied simultaneously.

4.2.3 A Physics-Based Brightness Change Model

A different approach to handle brightness changes is to model these explicitly,
and to then estimate both optical flow and brightness change parameters based
on this model. Haussecker and Fleet [25] proposed a generalized formulation of
optical flow estimation based on models of brightness variation that are caused by
time-dependent physical processes. Brightness changes along a temporal trajectory
x(t) = (x(t), y(t))T. This is described by a parameterized function hI

I(x(t), t) = hI(I0, t,g) (4.6)

where I0 = I(x(0), 0) denotes image intensity at time t = 0 and g = [g1, ..., gn]
T

contains n brightness change parameters. Taking the total derivative on both sides
yields

∂xIux + ∂yIuy + ∂tI =
d

dt
hI(I0, t,g) . (4.7)

Assuming brightness constancy, i.e., hI(I0, t,g) = c, (4.7) reduces to (2.3). Figure
4.2a shows constant, linear and nonlinear changes of intensity due to brightness
changes. Given a physical model h for brightness changes, both the optical flow
(ux, uy) and the parameter vector g need to be estimated. Several time-dependent
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a b
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I(x,t=t0)
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Figure 4.2: a: Change of intensity values caused by brightness changes (cf. [25])
and b: temporal intensity changes caused by illumination changes within a spatial
neighborhood with local 3D coordinates ΔX.

brightness change models are proposed in [25], i.e., changing surface orientation,
motion of the illuminant, and physical models of heat transport in infrared images.
We derive a novel brightness change model [60], which describes spatially varying
time-dependent illumination changes caused by directed, inhomogeneous illumination
and changing surface orientation. Figure 4.2b illustrates spatially varying intensity
changes in a neighborhood Λ. ΔX and ΔY are local coordinates of Λ. This model
is able to also describe illumination by spotlights, whereas the models presented in
[25] assume that the intensity change of pixels is constant over a local neighborhood.

The cameras convert light intensity L into image intensities I (i.e., gray values). In
order to derive a model for dI /dt , the temporal changes visible in the data, we look
into the dependencies of L. We assume that a translating surface patch is illuminated
by a spatially smoothly varying, translating and rotating light source. Direction ni

of incident irradiance E may vary smoothly with time and space but reflectance
direction nr is kept constant.

2 Visible light intensity i.e., reflected radiance L depends
on incident irradiance E and on the patch’s bidirectional reflectance distribution
function (BRDF) B (cmp. e.g., [24]) according to

L(X(ΔX,ΔY, t), t,nr) = B(X(ΔX,ΔY, t),ni(t),nr)E(ΔX,ΔY, t,ni(t)) (4.8)

and the BRDF depends on the material and hence on the position on the surface
patch as well as the directions of incidence ni and reflectance nr. We assume that
the material does not change with time and therefore

B(X(ΔX,ΔY, t),ni(t),nr) = B(X(ΔX,ΔY, 0),ni(t),nr) . (4.9)

If the BRDF is smooth enough, which is typically given at sufficient angular distance
from specularities, changes due to smoothly changing incidence direction ni(t) can

2Reflectance direction nr obviously also varies with pixel position in the cameras, but we do not
use this extra information.
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4 Modeling Brightness Changes

be modeled using a smooth function hB(t) with hB(0) = 1

B(X(ΔX,ΔY, t),ni(t),nr) = B(X(ΔX,ΔY, 0),ni(0),nr)hB(t) . (4.10)

Being spatially inhomogeneous the moving irradiance E changes not only by a time
dependent factor, but by a factor also varying smoothly in space

E(ΔX,ΔY, t,ni(t)) = E(ΔX,ΔY, 0,ni(0))hE(ΔX,ΔY, t) . (4.11)

Here again hE(ΔX,ΔY, t) is a smooth function with hE(ΔX,ΔY, 0) ≡ 1. Plugging
(4.10) and (4.11) in (4.8) the reflected radiance L becomes

L(X(ΔX,ΔY, t), t) = L(X(ΔX,ΔY, 0), 0)hB(t)hE(ΔX,ΔY, t) . (4.12)

We assume image intensities I to be proportional to the radiance L, i.e., the charac-
teristic curve of the used camera to be linear, and therefore

I(X(ΔX,ΔY, t), t) = I(X(ΔX,ΔY, 0), 0) exp(hI(ΔX,ΔY, t)) (4.13)

where hI(ΔX,ΔY, t) := ln(hB(t)hE(ΔX,ΔY, t)). The sought temporal derivative of
(4.13) is thus

d
dt
I = I(X(ΔX,ΔY, 0), 0) exp(hI(ΔX,ΔY, t)) d

dt
hI(ΔX,ΔY, t)

= I(X(ΔX,ΔY, t), t) d
dt
hI(ΔX,ΔY, t) .

(4.14)

The most common assumption in optical flow-like approaches is brightness constancy,
boiling down to hI(ΔX,ΔY, t) ≡ 0. Haussecker and Fleet [25] derive models for
changing surface orientation and a moving illumination envelope approximating hI

as a second order power series respecting temporal changes only

hI(ΔX,ΔY, t) ≈ hHF (t,g) :=
2∑

i=1

git
i (4.15)

where g1 and g2 are treated as local constants in the estimation process. Looking at
Figs. 4.8f and g we observe that for highest accuracy this is not sufficient. Therefore we
introduce a more accurate approximation of hI explicitly modeling spatial variations
still respecting hI(ΔX,ΔY, 0) ≡ 0

hI(ΔX,ΔY, t) ≈ h(ΔX,ΔY, t,g) :=
2∑

i=1

(gi + gi,xΔX + gi,yΔY ) ti . (4.16)
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The temporal derivative of h is then

f(ΔX,ΔY, t,g) :=
d

dt
h(ΔX,ΔY, t,g) =

2∑
i=1

i (gi + gi,xΔX + gi,yΔY ) ti−1 (4.17)

using the notation
g = [g1, g2, g1,x, g1,y, g2,x, g2,y]

T . (4.18)

Insertion of f(ΔX,ΔY, t,g) into the generalized brightness change constraint
(4.7) yields the sought brightness constraint.

Ixux + Iyuy + It − I

2∑
i=1

i (gi + gi,xΔX + gi,yΔY ) ti−1 = 0 . (4.19)

4.3 Extension of 3D Motion Estimation Models

In this section we briefly present, how the three models proposed in Chap. 3, namely
Scene Flow, Range Flow and the Affine Model are extended to handle the brightness
constraints different to the brightness constancy constraint (2.3).

4.3.1 Scene Flow

The extension of Scene Flow to handle brightness changes is straightforward. The
constraints proposed in Sec. 4.2.1, Sec. 4.2.2 or Sec. 4.2.3 replace the brightness
constancy constraint in (3.4). The equation system is then solved analog to Sec. 3.1.

4.3.2 Range Flow

In this section we show how to extend Range Flow for varying illumination [61] and
how the choice of prefilters and brightness constraints influence estimation results of
Range Flow.

Adaption of Constraints

In order to adapt the gradient constraints in (4.4) and (4.5) for Range Flow the
optical flow ux, uy is eliminated using (3.6) and (3.7) (cmp. derivation of the intensity
constraint (3.13)), yielding

∂(Ix, Y )

∂(x, y)
U +

∂(X, Ix)

∂(x, y)
V +

∂(X, Y, Ix)

∂(x, y, t)
= 0 (4.20)

∂(Iy, Y )

∂(x, y)
U +

∂(X, Iy)

∂(x, y)
V +

∂(X, Y, Iy)

∂(x, y, t)
= 0 . (4.21)
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The combination of gradient and intensity constraint proposed in Sec. 4.2.2 leads
to three constraint equations, viz. (3.13), (4.20) and (4.21), which should be satisfied
simultaneously by the horizontal and vertical Range Flow components U and V .
Adaption of the brightness change model is handled analog. Eliminating the optical
flow (ux, uy) in (4.19) using (3.6) and (3.7) leads to

∂(I, Y )

∂(x, y)
U +

∂(X, I)

∂(x, y)
V +

∂(X,Y, I)

∂(x, y, t)
− Ig1 − Ig1,xΔX − Ig1,yΔY

− 2Ig2t− 2Ig2,xΔXt− 2Ig2,yΔY t = 0 . (4.22)

Estimation of Motion and Brightness Parameters

Estimating the 3D motion from the input data then corresponds to fitting the
selected model to the original or, if applicable, prefiltered data. The parameters
to be estimated comprise the motion parameters U , V , W for all models and, for
the physics-based brightness change model from Sec. 4.2.3, the brightness change
parameters g1, g1,x, g1,y, g2, g2,x, g2,y in the Taylor series (4.16).

As described in Secs. 3.2.3, 4.2.1, 4.2.2 and 4.2.3 we have more than one constraint
for the U and V components of the Range Flow. In the same way as expressing
the range constraint by dT

rcp = 0, the intensity constraint (3.13) and the gradient
constancy constraints (4.20) and (4.21) may be expressed by dT

Qp = 0, where dQ is
computed from the observed data according to

dQ =

[
∂ (Q, Y )

∂ (x, y)
,
∂ (X,Q)

∂ (x, y)
, 0,

∂ (X, Y,Q)

∂ (x, y, t)

]T
(4.23)

with Q ∈ {I, Ix, Iy} selected as appropriate. We adapt all constraints to identical
dimensions by inserting zeros at those positions into the data vector d, which
correspond to positions of parameters in the parameter vector p which are not part
of the respective constraint. In particular, the physics-based brightness change model
in Sec. 4.2.3 contains motion and brightness change parameters, thus leading to the
enlarged parameter vector

p = [U, V,W, 1,gT]T . (4.24)

The data vectors for both the range constraint and the brightness change constraint
have hence to be enlarged correspondingly by appropriate insertion of zeros. As
shown in [69], combining the different constraints yields a new structure tensor which
is simply the weighted sum of the tensor Jrc from the range constraint (3.14), and
the tensors Ji, i = 1, . . . , 4 from the intensity-dependent constraints (3.13), (4.20),
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4.3 Extension of 3D Motion Estimation Models

(4.21) and (4.22). With the weights βi, the overall tensor thus is

J = Jrc +
4∑

i=1

βiJi . (4.25)

The weights βi may even be used to switch between the models, and to account for
different signal-to-noise-ratios in the structure tensors. Analog to standard Range
Flow, data channels should be scaled to the same mean and variance before they are
combined. Parameter estimation is done analog to Sec. 3.2.3.

4.3.3 Affine Model

In this section we will adapt the brightness change model (4.19) to the Affine Model
presented in [60] and Sec. 3.3. Combining the brightness change model (4.19) with
the 5D affine flow model (3.26) yields

Ixdx + Iydy + Isxdsx + Isydsy + Itdt − Ifdt = 0 . (4.26)

Inserting differentials dx and dy in (4.26) analog to Sec. 3.3 leads to data vector
d and parameter vector p:

d = (Ix, Iy, IxΔx, IxΔy, IyΔx, IyΔy,

Isx , Isy , It, I, IΔx, IΔy, It, ItΔx, ItΔy)T

p = (uxdt + νdsx , uydt + νdsy , a11dt + b1dsx , a12dt + b2dsx ,

a21dt + b1dsy , a22dt + b2dsy , dsx , dsy , dt ,

g̃1dt , g̃1,xdt , g̃1,ydt , g̃2dt , g̃2,xdt , g̃2,ydt )
T .

(4.27)

where f has been substituted by the novel brightness change model from (4.17) and
the brightness change parameters are

g̃1 = −g1 g̃2 = −g2

g̃1,x = −Z0

fc

(
g1,x(1− ZY

y0
f
) + g1,yZX

y0
f

)
g̃1,y = −Z0

fc

(
g1,xZY

x0
f

+ g1,y(1− ZX
x0
f

)

g̃2,x = −Z0

fc

(
g2,x(1− ZY

y0
f
) + g2,yZX

y0
f

)
g̃2,y = −Z0

fc

(
g2,xZY

x0
f

+ g2,y(1− ZX
x0
f

)
(4.28)

For simpler brightness models or when a 1D camera grid is used (i.e., dsy = 0)
terms with non-existing parameters are simply omitted.
Parameter estimation is done analog to the standard Affine Model (cmp. Sec. 3.3).
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a b

Figure 4.3: Sinusoidal pattern data with intensity values scaled to range [0; 255]. a
and b: First and last image taken at central camera position, g1 = g1,x = 0, g2 = −0.2
and g2,x = −0.002 (cmp. (4.16)).

4.4 Experiments

In this section we validate the performance of the proposed brightness handling
techniques, namely prefilters and more robust brightness constraints and the novel
brightness change constraint. We first evaluate the novel brightness change model
presented in Sec. 4.2.3 with the Affine Model and compare results to the brightness
change model proposed by Haussecker and Fleet [25]. Then we show influence of
prefilters and brightness constraints on Range Flow in Sec. 4.4.2. Finally we compare
the three 3D motion estimation models presented in Chap. 3 with and without
brightness change modeling.

4.4.1 Evaluation of Brightness Change Models
for the Affine Model

Synthetic sinusoidal sequences are used to examine the influence of the different
brightness change parameters (4.19) onto motion estimation. Performances of the
standard brightness constancy model, the brightness change model presented by
Haussecker and Fleet [25] and the novel brightness change model are then compared
on synthetic data in Sec. 4.4.1.

Sinusoidal Pattern

Sinusoidal pattern data is used to evaluate systematic errors and noise dependence
of the estimation process. In Fig. 4.3 two images of such a sequence are shown. The
wavelengths are 8 pixel in x- and 80 pixel in y-direction and amplitude changing
according to (4.16). We generated data sets for different values of brightness change
parameters g1, g1,x, g2, and g2,x, but not for g1,y and g2,y as they work like the
respective x-parameters. The other parameters are UX = UY = 0 mm/frame,
UZ = 0.1 mm/frame, ZX = ZY = 0, Z0 = 100 mm and f = 10 mm. As performance
measure for a parameter Q we use the mean absolute value either of the relative
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Figure 4.4: Mean absolute value of relative or absolute error of brightness change
parameters g1 (top) and g2 (bottom) versus the brightness change parameters g1 and
g1,x. Noise free data.

error if Qref �= 0 or of the absolute error if Qref = 0

Qrel =
1

N

N∑
i

|Qest(i)−Qref (i)|
|Qref (i)| Qabs =

1

N

N∑
i

|Qest(i)−Qref (i)| (4.29)

where the sum runs over all pixels not suffering from border effects and the lower
indices rel stand for ’relative error’, abs for ’absolute error’, est for ’estimated’
and ref for ’reference’. Parameter estimation was done according to (3.3.2), with
weighting matrix W implemented via a 65-tab Gaussian with standard deviation
σW = 16.

The first experiment evaluates systematic error of and cross talk between bright-
ness change parameters. Figures 4.4 and 4.5 show errors of g1 and g2 versus brightness
change parameters g1 and g1,x, and g2 and g2,x respectively. We observe that the
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Figure 4.5: Mean absolute value of relative or absolute error of brightness change
parameters g1 (top) and g2 (bottom) versus the brightness change parameters g2,
and g2,x. Noise free data.

relative error of g1 is well below 0.5% if g1 < 1 and then moderately raises. This is
due to the fact that temporal derivatives of the data It become less and less accurate
when exponential behavior of the data becomes more and more prominent. The same
explanation holds for the linear error increase of g2 with increasing g2. And as local
brightness changes due to g1,x come close to changes due to g1 if g1 = g1,xΔX for the
same local patch, we expect and observe severe cross talk between g1,x and g1, more
severe for the model not containing g1,x. This is also true for g2,x and g2, but there
the cross talk is the same for both models, thus modeling g2,x is of no advantage
here (cmp. Fig. 4.5 bottom). Further g1 is almost independent of g2 and g2,x, as well
as g2 of g1. But while g2 does depend on g1,x if g1,x is not modeled, the error of g2
is about 1 to 2 orders of magnitude smaller if g1,x is modeled (cmp. Fig. 4.4 lower
right). The positive effect on accuracy of the method if g1,x is modeled is even higher
for UZ , as we see next.
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Figure 4.6: Mean absolute value of relative error of UZ versus the brightness change
parameters g1 and g1,x. Noise free (top row) and noisy data (bottom).

In Figs. 4.6 and 4.7 results for UZ,rel versus brightness change parameters are
shown, using noise free data and data with Gaussian noise of standard deviation
σn = 0.025 being 2.5% of the amplitude of the signal at t = 0. As before all
parameters except the one on the ordinate have been kept fix. UZ is the most
relevant motion parameter, because errors in UZ directly also influence UX and UY

(see the components of the parameter vector p in (3.36)). Let us first look at the
noise free case. As soon as g1 is significantly larger than 0 the brightness constancy
model immediately breaks down, errors get unacceptably high. For the two other
models UZ does not react on small g1 and only weak for larger values of g1. When
brightness changes due to g1,x are present only the model containing spatial changes
remains stable, brightness constancy and Haussecker-Fleet-like models have severe
problems. Looking at UZ,rel with changes due to g2 or g2,x we observe that g2 and
g2,x cause similar errors in UZ . This is in complete consistency with our earlier
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Figure 4.7: Mean absolute value of relative error of UZ versus the brightness change
parameters g2, and g2,x. Noise free (top row) and noisy data (bottom).

observation in Fig. 4.5. While all models behave the same for small absolute values
of g2 or g2,x, the brightness constancy model rapidly breaks down at |g2| ≈ 0.1 or
|g2,x| ≈ 0.02. Comparing errors of UZ for noise free and noisy data sets, we see only
a small effect when g2 or g2,x are close to 0. For larger g2 or g2,x the plots for noisy
and noise free data look almost identical. Also for large g1 and g1,x errors remain
unchanged. But for smaller g1 and g1,x the influence of noise can be quite high. We
observe that errors increase from well below UZ,rel = 0.01 up to nearly UZ,rel = 0.1.
We conclude that modeling g1,x is worth the effort while g2,x does not really help.
Noise may be an issue, thus it has to be kept as low as possible.

Synthetic Cube

Temporal image sequences with 9 images were created at 25 positions of a 2D 5× 5
camera grid using POV-Ray [15]. For the whole cube ground truth is UX = UY = 0
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a b c

d e f

g h i

Figure 4.8: Motion estimation of cube moving towards camera with spot light moving
around cube center. a and b: first and last image taken with central camera. c:
Ground truth motion, d–f: color coded model errors (projected on contrast reduced
cube) for models without (d), constant temporal (e), and spatially varying temporal
brightness change (f). Below the model errors, scaled motion estimates for the models
are depicted, respectively (g–i).

mm/frame, UZ = 2 mm/frame, and ZY = 0. At the left side ZX ≈ 1.73=̂60◦ and on
the right ZX ≈ 0.577=̂30◦. As one can see in Figs. 4.8a and b, a noise texture with
high contrast is mapped on the sides of the cube and in addition to the ambient
illumination a spot light rotates around the center of the cube such that it moves
from right to left. Figure 4.8c depicts ground truth motion. In Figs. 4.8d-f the
numerical model error, i.e., the largest of the 3 smallest eigenvalues of the structure
tensor is depicted as color overlay on the central input image. For the brightness
constancy model (Fig. 4.8d) error is highest. Modeling spatially constant brightness
changes (Fig. 4.8e) errors reduce, but at the edge of the cube and at the border of
the spotlight they are still high. With spatially varying temporal changes errors
again become smaller, visible only at the edge of the cube. The components UX and
UY of the motion vectors shown in Figs. 4.8g-i are scaled by a factor 135 relatively
to UZ in order to visualize estimation errors (UX and UY should be 0). Even with
this large accentuation of errors motion vectors estimated with the richest model

71



4 Modeling Brightness Changes

point in the correct direction almost everywhere. The other models yield much less
accurate vector fields.

4.4.2 Evaluation of Prefilters and Brightness Change
Models for Range Flow

The models compared are combinations of the range constraint with

1. the intensity constancy constraint (3.13), i.e., β2 = β3 = β4 = 0 (INT),

2. the gradient constancy constraint (4.20) and (4.21), i.e., β1 = β4 = 0 (GRAD),

3. the combined intensity and gradient constancy constraint (3.13), (4.20) and
(4.21), i.e., β4 = 0 (INTGRAD) and

4. the intensity constraint with modeling of brightness changes by Taylor series
(4.22), i.e., β1 = β2 = β3 = 0 (TAYLOR).

Model INT without prefiltering is the original Range Flow as introduced by Spies et
al. [69]. As shown in Sec. 4.4.1, we may drop g2,x and g2,y for model TAYLOR, as
these have only a negligible effect on the estimation. We investigate the influence
of temporal and spatial varying temporal brightness changes for noise-free input
sequences as well as for data corrupted by additive Gaussian noise or by intensity
dependent noise. Furthermore, accuracy of the 3D motion estimates is evaluated on
a rendered cube illuminated by a directed light source. For the synthetic sinusoidal
sequences, ground truth range data is used, while for all the cube experiments, we
generate reference range data by the Affine Model. Using multi-camera data allows
for comparison with [31] and has no further effect on range flow.

To compute the intensity derivatives, we used the optimized 5× 5× 5 filter sets
described in [54] for all experiments. Motion and brightness change parameters
are determined as the minimizer of the model error given in (2.17), as described in
Sec. 2.3.2. Spies et al. [69] use β0 = 1 for their experiments (cmp. (4.25)). We scale
all structure tensors from the different models and prefilters to have same variance
as standard Range Flow, i.e., the variance of model INT without prefiltering. In [61],
structure tensors were not scaled, therefore leading to slightly different results.

Sinusoidal Patterns

For a systematic error analysis of the different models, we use sinusoidal patterns
under varying illumination generated using the Sequence Generator(see App.B).
The varying illumination is generated according to (4.6), (4.13) and (4.16). Three
frames of a typical test sequence are shown in Fig. 4.9. Its parameters were set as
follows: Rendered surfaces translate with U = 0.0073mm/frame, V = 0mm/frame
and W = 0.5mm/frame and rotate around the Y -axis with an angular velocity of
ω = 0.002 radians/frame. For t = 0, the surface normal of the patch is n = (1, 2,−1)T,

72



4.4 Experiments

a b c

Figure 4.9: Scaled first (a), central (b) and last (c) frame of sinusoidal sequence with
illumination parameters g1 = 0 and g1,x = 0.06.

and the distance of the patch center to the camera is Z0 = 100mm. The synthetic
sensor contains 301×301 pixels of size (0.0044mm)2. The focal length of the synthetic
projective camera is f = 12mm. For each experiment, we evaluate the mean absolute
value of the relative error of U

ERRU =
1

N

N∑
i

|Uestimated(i)− Ureference(i)|
|Ureference(i)| (4.30)

over all pixels i at a minimum distance of 60 pixels from the nearest image border.
The structure tensor weighting matrix W is realized by a large, 65-tab Gaussian with
standard deviation σW = 19 in order to reduce systematic errors stemming from
the phase of the sinusoidal pattern. Prefilters are designed as described in Sec. 4.1,
i.e., σpre denotes the standard deviation of the lowpass Gσpre in (4.1). As in [60], we
compare estimation errors of U for increasing illumination parameters g1|g1,x=0 and
g1,x|g1=0 to simulate brightness changes. We provide here the errors for U only, as
errors of V and W exhibited very similar behavior. Furthermore, we investigate the
influence of adding Gaussian noise with σn = 0.025 or shot noise to the intensity
data. The Poisson-distributed shot noise is approximated by adding Gaussian noise
with intensity-dependent standard deviation

σsn = k

√
I(x, t)

α
(4.31)

with k = 0.025 and α = 1. The sinusoidal pattern for t = 0 has intensity values in the
range of 0 ≤ I ≤ 2. To facilitate the evaluation of the effects of prefiltering, we show
the errors for all tested models with and without prefiltering in Fig. 4.10-Fig. 4.13.

In Fig. 4.10, the errors of U for the described models with and without highpass
and homomorphic prefiltering are shown over the parameter g1. Highpass prefiltering
reduces estimation errors for models INT and INTGRAD. For models GRAD and
TAYLOR, using no prefilter yields results as good as using a highpass with standard
deviation σpre > 15 (see (4.1)). Strong filtering, i.e., small σpre, degrades estimation
results for all models. Overall, the model TAYLOR yields the best results for most
cases, only for g1 ≈ 0.3 the model GRAD performs slightly better. Grooves in the
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Figure 4.10: Error of motion estimates U versus increasing temporal brightness
changes without prefiltering (“nopre”) and with highpass (a - d) or homomorphic (e
and f) prefiltering. Temporal brightness changes are modeled by g1 �= 0. All other
parameters of g in (4.18) are zero. Standard deviation σpre according to (4.1). Models
with highpass prefiltering are a: INT, b: GRAD, c: INTGRAD and d: TAYLOR.
Models with homomorphic prefiltering are e: INT and f: TAYLOR.
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Figure 4.11: Error of motion estimates U versus increasing spatially varying temporal
brightness changes without prefiltering (“nopre”) and with highpass (a - d) or
homomorphic (e and f) prefiltering. Spatially varying temporal brightness changes
are modeled by g1,x �= 0. All other parameters of g in (4.18) are zero. Standard
deviation σpre according to (4.1). Models with highpass prefiltering are a: INT, b:
GRAD, c: INTGRAD and d: TAYLOR. Models with homomorphic prefiltering are
e: INT and f: TAYLOR.
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Figure 4.12: Same as Figs. 4.10a-d but for data with additive Gaussian noise of
standard deviation σn = 0.025. Error of motion estimates U versus increasing
temporal brightness changes and highpass prefiltering or without prefiltering (“nopre”).
Models are a: INT, b: GRAD, c: INTGRAD and d: TAYLOR.

error surfaces where errors become low, e.g., for model INT at a1 ≈ 0.1 and σpre < 10,
may be the result of improved gradients due to brightness changes and are highly
pattern dependent. All models perform comparable when applying homomorphic
prefiltering. Therefore, we show errors for the models INT and TAYLOR only
(Figs. 4.10e and f). Homomorphic prefiltering with σpre > 10 reduces the brightness
changes efficiently for all values of a1, while prefiltering with σpre < 10 degrades the
signal. For small brightness changes, model TAYLOR performs even better without
prefiltering.

Figure 4.11 repeats the experiments shown in Fig. 4.10, but with brightness
changes now being governed by the parameter g1,x instead of g1. This means that
brightness changes vary now not only temporally, but also spatially.

Evidently, the errors shown in Fig. 4.11 depend more strongly on σpre than those
in Fig. 4.10. Prefiltering with standard deviation of 12 ≤ σpre ≤ 50 yields the best
results. As before, models GRAD and TAYLOR perform well without prefilter.
Figure 4.11e and f show similar behavior for homomorphic prefiltering. Prefiltering
with σpre > 50 degrades the signal for all models but model TAYLOR. For model
TAYLOR, using no prefilter yields best results if g1,x � 0.07.

Figs. 4.12 and 4.13 illustrate the effects of the proposed prefilters on noisy data.
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Figure 4.13: Same as Figs. 4.10e and f but for input data with added Gaussian
noise with σn = 0.025 (a and b) or shot noise with k = 0.025 (c and d). Error of
motion estimates U versus increasing temporal brightness changes and homomorphic
prefiltering or without prefiltering (“nopre”). Models are INT (a and c), and TAYLOR
(b and d).

In Sec. 4.1, highpass filtering was shown to have no effect on noise distributions in
contrast to homomorphic prefiltering. We present errors of U for highpass prefiltering
for added Gaussian noise with standard deviation σn = 0.025 only (Fig. 4.12), because
results for shot noise are almost the same. In comparison to the noise-free case, the
errors increased and the grooves in the error surfaces vanished. Overall, the model
TAYLOR yields best results for g1 > 0 and similar results as the other models for
g1 ≈ 0.

Figure 4.13 shows how homomorphic prefiltering affects estimation results for
added Gaussian noise and simulated shot noise. As stated above, the nonlinear
log-operation makes originally signal-independent noise signal-dependent. Therefore,
homomorphic prefiltering of noisy intensity data with brightness changes g1 > 0.5
causes heavily degraded signals. If the noise itself is signal-dependent, such as shot
noise, homomorphic prefiltering performs much better. In both noise experiments,
model TAYLOR without prefilter yields the best and most reliable results.
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a b

c d

Figure 4.14: Cube experiment data. a: Central frame of cube sequence after highpass
and b: homomorphic prefiltering, c: regions of cube used for error analysis, and d:
rendering of ground truth.

Synthetic Cube

The synthetic cube sequence allows to test the models on more realistic data, but
still with ground truth available. The cube moves with U = −0.2mm/frame,
V = 0mm/frame and W = −2mm/frame. In addition to ambient light, the cube is
illuminated by a fixed spotlight from the right. The input data consists of sequences
with nine frames each, acquired by five synthetic cameras positioned on the x-axis.
This setup allows us to use the optimized filter sets proposed in [54]. We compute
range data with the stereo estimation algorithm presented in [60]. Figure 4.14 shows
two frames of the cube sequence, a frame after highpass prefiltering, and one after
homomorphic prefiltering. Also shown are the regions investigated on the left and
right side of the cube, as well as a rendering of the ground truth. Both prefilters have
a standard deviation of σpre = 2, and the weighting matrix W is implemented using
a 31-tab Gaussian with standard deviation σW = 11. In Fig. 4.15, motion estimates
of the original Range Flow[69] (i.e., model INT) are compared to the following three
models: GRAD with highpass prefilter, INTGRAD with homomorphic prefilter, and
TAYLOR without prefilter. For all models, the errors are too small to be visible
without amplification. Thus errors are amplified for U and V by 100 and for W by
50.

Standard Range Flow estimation [69], i.e., model INT without prefilter (Fig. 4.15a),
yields highly corrupted estimation results on the right side of the cube where
illumination changes because of the fixed spotlight. The other side does not suffer from
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a b

c d

Figure 4.15: Scaled motion estimates with amplified errors for different models: a:
INT without prefiltering, b: GRAD with highpass prefiltering, c: INTGRAD with
homomorphic prefiltering, d: TAYLOR without prefiltering. The ground truth is
shown in Fig. 4.14d.

illumination changes. Range Flow estimates there are thus much more accurate. As
expected, estimates are substantially improved by the other models where brightness
changes are present.

On the left side of the cube all combinations of models and prefilters yield more
or less the same results as original Range Flow.

On its right side, where the brightness changes dominate, applying a highpass
prefilter, for instance together with model GRAD (Fig. 4.15b), improves the motion
estimates where spatial brightness changes are small, i.e., in the middle of the light
spot. Motion estimates are visibly worse at the borders of the light spot. Model
TAYLOR (Fig. 4.15d) and model INTGRAD yield more uniform and more accurate
motion vectors for the right side of the cube.

Table 4.1 shows numerical errors of the different models for the regions on the
left and right side of the cube (see Fig. 4.14c). We show the average angular error
(see App.A) and, since our target application is plant growth estimation, the average
relative growth rate and their standard deviation. In this experiment, the cube does
not grow, thus estimated relative growth rates should be zero. According to [70],
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Table 4.1: Average angular error (AAE) in degrees, average relative growth rate
(RGR) in percent per frame and their standard deviations of regions on left and right
side of the cube (see Fig. 4.14c). Errors or standard deviations above 1◦ (AAE) or
1%/frame (RGR) are indicated in red, below 0.1◦ (AAE) or 0.01%/frame (RGR) in
green.

model prefilter
left region right region

AAE RGR AAE RGR

NO 0.148± 0.074 0.093± 0.092 4.311± 4.024 4.372± 9.211
INT HP 0.136± 0.071 0.108± 0.096 0.255± 0.278 0.137± 0.195

HOM 0.132± 0.069 0.111± 0.099 0.061± 0.015 −0.007± 0.054

NO 0.146± 0.075 0.096± 0.095 0.681± 0.719 0.352± 0.627
GRAD HP 0.139± 0.070 0.111± 0.098 0.425± 0.455 0.236± 0.321

HOM 0.131± 0.067 0.115± 0.100 0.062± 0.015 −0.007± 0.055

NO 0.150± 0.075 0.095± 0.094 4.764± 4.309 5.055± 10.029
INTGRAD HP 0.143± 0.071 0.110± 0.097 0.671± 0.726 0.395± 0.552

HOM 0.132± 0.068 0.113± 0.099 0.062± 0.015 −0.006± 0.053

NO 0.148± 0.074 0.090± 0.094 0.056± 0.014 −0.009± 0.052
TAYLOR HP 0.136± 0.071 0.108± 0.096 0.046± 0.015 −0.012± 0.051

HOM 0.132± 0.069 0.111± 0.099 0.061± 0.015 −0.007± 0.054

NO 4.941± 1.812 −0.739± 11.59 2.216± 1.223 −3.36± 8.694
[31] HP 8.977± 3.714 −3.20± 15.51 4.041± 4.078 −4.19± 1.557

HOM 8.907± 2.995 −1.83± 13.02 2.093± 0.784 0.347± 7.358

dA =
|s(x+1, y)+f(x+1, y)− (s(x, y)+f(x, y))|×|s(x, y+1) + f(x, y+1)−(s(x, y)+f(x, y))|

|s(x+1, y)−s(x, y)|×|s(x, y+1)− s(x, y)|
(4.32)

the relative area change dA of a local surface s may be calculated by (4.32), when
s(x, y) = [X(x, y), Y (x, y), Z(x, y)]T is parameterized in sensor coordinates x and y,
and when the 3D displacement vector field f(x, y) = [U(x, y), V (x, y),W (x, y)]T is
given. The relative growth rate is determined by RGR = (dA− 1) · 100%.

For the left side of the cube, where no brightness changes are present, all presented
Range Flow models perform comparably. This coincides with the observations in
Fig. 4.15. On the right side of the cube, where illumination changes are present, ho-
momorphic prefiltering results in excellent estimates for all models. Model TAYLOR
is most robust with respect to prefiltering, whereas results for the other models are
much more prefilter dependent.

Additionally, we show results obtained by the recent scene flow approach of
Huguet and Devernay [31]. This is essentially a warping technique for stereo camera
sequences analogous to the optical flow approach of Papenberg et al. [49]. We apply
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Figure 4.16: Average angular error of the motion estimates in the left and right
region, respectively, of the cube for increasing σW of weighting matrix W for different
models.

the algorithm as provided by Huguet and Devernay using parameter settings of
the rotating sphere experiment. Only the weighting parameter γ of the gradient
constraint was increased to γ = 30 in order to reduce the effect of the severe brightness
variations in the data. The algorithm can handle 4 input images, i.e., two for each
camera in a stereo setup. We chose the first and the last frame of the two outer
cameras from the cube data set.

Compared to the original Range Flow of [69], and on the right side of the cube,
errors are reduced by approximately a factor of 2. However, on the stronger tilted
left side of the cube, results are drastically worse than for all other models. In
contrast to the other models, prefiltering does not or not significantly improve
results. Probably incorporating more input data, i.e., more than four images, may
significantly improve results. This would confirm that using an elaborate estimator
alone does not necessarily help, instead, the whole estimation framework including
appropriate constraints, discretizations and the estimator needs to be optimized.

The cube experiment showed that growth estimates are accurate when homomor-
phic prefiltering or model TAYLOR are applied. On the right side of the cube, best
growth estimates are well below 0.1%/frame and accurate enough for plant growth
studies where a relative measurement error of approximately 10% is acceptable.
However, variances are high, such that spatial resolution is not yet in the desired
range. In addition, results for the accuracy on the left, stronger tilted side of the
cube are not yet sufficient.

In Fig. 4.16, we compare the performance of the different models for different sizes
of the neighborhood Λ used in the estimation process. As stated in Sec. 4.3.2, the
neighborhood Λ is defined by a normalized Gaussian filter W with standard deviation
σW. On the left side of the cube, all models yield similar results for most sizes of W.
Only for higher values of σW , model INTGRAD with homomorphic prefiltering yields
slightly higher errors. For neighborhoods with σW > 25, edges in the data degrade
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estimation results. On the right side of the cube, model INT without prefiltering
performs worst, as expected. Also, model GRAD with highpass prefiltering yields
unsatisfying results. Model INTGRAD with homomorphic prefiltering and model
TAYLOR without prefilter perform similar and significantly better than the other
models. The optimal size of filter W is σW � 15.

We conclude that, if the brightness constancy assumption is violated, homomor-
phic prefiltering rather than linear highpass prefiltering should be used. Furthermore,
the size of the prefilter has a great impact on estimation results and has to be chosen
carefully. Nevertheless, even for small neighborhoods modeling brightness changes
yields slightly more accurate results than using a model merely attenuating the
effects of brightness changes.

4.4.3 Comparison of Models

So far we extended the three models to handle brightness changes coming from varying
illumination and tested the influence of prefilters and different brightness constraints
Sec. 4.4.2 and Sec. 4.4.1. In this section we compare performance of the novel
brightness change model combined with Scene Flow, Range Flow and the Affine Model.
Again we do not model brightness change parameters g2,x and g2,y, as these have only
a negligible effect on the estimation (cmp. Sec. 4.4.1). Analog to the experiments
in Sec. 3.4 we show experiments on sinusoidal patterns for evaluation of systematic
errors. A rendered sequence showing a moving cube is used to test performance
under more realistic conditions and with ground truth available. Estimation results
on plant leafs demonstrate the improved performance of the models on real data.

Sinusoidal Pattern

In the first experiment we compare the influence of the brightness change parameters
g1, g1,x and g2 on the average angular error (cmp. App.A). The sinusoidal sequences
are generated with the Sequence Generator (cmp. App.B). The basic parameters
for all experiments are the same as in Sec. 3.4 and we use a wide baseline setup.
Brightness change parameters are set to g1 = 0.05, g1,x = 0.01 and g2 = 0.02. Figure
4.17 demonstrates the performance of the three models for increasing brightness
change parameters, while all other parameters are fixed. In general we see that Range
Flow yields lowest angular errors for small brightness changes and for increasing
g2. For larger values of g1 or g1,x Scene Flow and the Affine Model perform better.
Figure 4.18 depicts average angular errors for fixed brightness changes and increasing
UZ (left) and σn (right). For all values UZ �= 0 Range Flow performs best, whereas
Scene Flow and the Affine Model perform up to one order of magnitude worse. This
holds also for low noise sequences. In case of increasing noise Scene Flow yields
lowest errors and Range Flow highest.

82



4.4 Experiments

a b

g1

AAE

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 0.5 1 1.5 2
g1,x

AAE

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 0.2 0.4 0.6 0.8 1

c

g2

AAE

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

-0.2 -0.1 0 0.1 0.2

Models: Scene Flow Range Flow Affine Model

Figure 4.17: Average angular error versus illumination parameters g1, g1,x and g2.
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Figure 4.18: Average angular error versus UZ and σn.

Synthetic Cube

Analog to Sec. 3.4 we test estimation of 3D motion on more realistic data with ground
truth available. We use the cube sequence rendered with POV-Ray [15] and add
varying illumination. Therefore the cube is additionally illuminated by a light spot
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a b c
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Figure 4.19: Motion estimation of cube moving towards camera illuminated by a
spotlight. a and b: First and last frame of the cube sequence. c: ground truth motion
estimates. d–i: Scaled motion estimates, middle row: models without brightness
change modeling: Scene Flow (d), Range Flow (e) and Affine Model (f). Bottom row:
Models with brightness change modeling: Scene Flow (g), Range Flow (h) and Affine
Model (i).

from the right. This causes temporally and spatially varying intensities, as expected
by our target application plant leaf motion estimation. We use the same 3D structure
tensor weighting matrix W as in Sec. 3.4 with spatio-temporal size of 65× 65 pixel
and 5 frames and standard deviation of σW = 19 in space and σW = 1 in time
direction. The cube is rotated by 60◦ degrees and moves with UX = −0.2 mm/frame,
UY = 0 mm/frame and UZ = −2 mm/frame. The first and the last frame of the
central camera are shown in Figs. 4.19a and b. Figure 4.19c depicts the ground truth
motion. Figures 4.19d-f show estimation results with the three standard models
presented in Chap. 3 and Figs. 4.19g-i show estimation results for the corresponding
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Figure 4.20: Castor Oil Plant sequence. Motion estimates for models without (left)
and with (right) brightness change modeling. a and b: Scene Flow, c and d: Range
Flow, e and f: Affine Model.

models with brightness change modeling. Errors of motion estimates are scaled by
factor by 100 in UX-and UY -directions and 10 in UZ-direction. Motion estimates of
models without brightness change modeling clearly have higher errors compared to
the models with brightness change modeling. Scene Flow with brightness change
modeling performs best, only at borders estimates are distorted. Brightness change
modeling shows much more effect on Range Flow and the Affine Model compared
to Scene Flow. Nevertheless estimates of Range Flow still suffer from errors and
borders and overestimation of UZ . Estimation errors of the Affine Model are higher
in X- and Y -direction, but UZ has no significant offset compared to Range Flow.
However the Affine Model yields worst results for this data set.
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Castor Oil Plant

The Castor Oil Plant sequence proposed in Sec. 3.4 heavily suffers from changing
illumination. Especially at the top of the leaf, where the shadow area decreases
the standard models yield no reliable estimates. We compare the standard models
from Chap. 3 with the models with brightness change modeling in Fig. 4.20. Motion
estimates of Scene Flow already yield almost everywhere reliable results without
brightness change modeling. The novel version outperforms the standard version of
Scene Flow and no outliers are visible and the estimated velocity field looks even
more smooth. Also estimates of Range Flow and the Affine Model show significantly
more smooth results with brightness change modeling. However, as for the results
of the cube sequence, Range Flow yields distorted motion estimates near depth
discontinuities and the Affine Model yields less reliable estimates.

4.5 Conclusions

In this section, we extended the three 3D motion estimation models described in
Chap. 3 by different approaches to handle inhomogeneous illumination. We derived
a novel brightness change constraint, where changes are approximated by a power
series. This model allows to handle changes in reflected radiance due to (1) changes
of illumination direction and (2) changes in incoming light intensity caused by
moving inhomogeneous incident irradiance. While the first effect may be modeled by
spatially constant temporal changes, the latter one causes spatially variant temporal
changes. In order to test performance of the novel brightness change constraint,
it was applied to the Affine Model. The sinusoidal pattern experiments reveal
that modeling spatial variations of brightness changes results in increased motion
estimation accuracy with respect to g1,x, but not with g2,x (cmp. (4.16)). Motion
vector fields of a translating cube illuminated by a moving spotlight have been
estimated using brightness constancy assumption and brightness change model with
or without spatial changes. The richest model yields significantly better results than
the other ones.
Based on this conclusion we presented a detailed error analysis for the novel brightness
change constraint and three different brightness constraints in combination with
highpass or homomorphic prefiltering on synthetic image sequences with Range
Flow. Prefiltering improved estimation results on data when illumination changes
were present, however, the standard deviation σpre of the lowpass used in the filters
should be large enough. If not, too much signal is lost, resulting in less accurate
motion estimates. Highpass filtering performs well if Gaussian noise or shot noise is
present. Homomorphic filtering works excellent for shot noise, but errors increase
when Gaussian noise and strong brightness changes are present. We conclude that,
except for this case, well tuned homomorphic prefiltering allows for accurate range
flow estimation in conjunction with all models. However a wrongly tuned filter
severely corrupts motion estimates. Furthermore, prefiltering increased uncertainty
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of motion estimates, as relevant signal is then also affected by the filtering.
Modeling brightness changes in Range Flow by the models GRAD or TAYLOR

instead of highpass prefiltering results in motion estimates of same or higher accuracy
in almost all scenarios investigated. The model INTGRAD mostly showed results
lying between the results of standard range flow (model INT) and the model GRAD.
Generally, best results were achieved by model TAYLOR and, especially when
noise was present, without prefiltering. Only for brightness changes with strong
spatial variations, i.e., g1,x 	 0, and noise-free data homomorphic prefiltering is
recommended. We conclude that suitably modeling brightness changes almost always
outperforms other approaches and increases overall accuracy without tuning of
prefilters.

A comparison of the three 3D motion estimation models using the novel brightness
change model demonstrated, that for synthetic sinusoidal sequences Range Flow
performs best for low noise and little brightness changes. Scene Flow showed best
performance for higher noise or larger brightness changes. The Affine Model yields
same results as Scene Flow for low noise and small brightness changes, but in other
cases higher errors. On the cube and the plant leaf sequence Scene Flow performed
best, while Range Flow suffered from outliers near borders. The Affine Model showed
most unreliable results.
The Affine Model is based on a translating patch model. This is not true for the
plant leaf sequence, because the leaf unfolds and rotates around the point where it
is fixed to the stem. In the next section we will extend the Affine Model to handle
rotation and introduce additional constraints to make 3D motion estimation more
reliable.
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Chapter 5

Modeling Rotation

The Affine Model presented in Sec. 3.3 handles translational motion only. This may
lead to severe problems in sequences where objects of interest rotate (cmp. the Castor
Oil Plant sequence in Fig. 4.20). In this chapter we extend the Affine Model to handle
rotational motion. Furthermore we introduce two additional local dimensions to the
standard 2D affine optical flow model, i.e., we model affine transformations not only
in local image coordinates Δx and Δy, but also in local camera displacement Δs and
time direction Δt. Analog to the 2D model we identify the additional parameters
with terms depending on scene structure, scene motion, and camera displacement.
This 4D affine optical flow model helps to make the second estimation process more
reliable, i.e., estimation of 3D motion parameters. The derivation is shown for a 1D
camera grid only, but extension for a 2D camera grid is analog1.
As in Sec. 3.3 we interpret the camera position s as additional dimension of the
data. Hence all image sequences acquired by a 1D camera grid can be combined to
sample a 4D-Volume in x-y-s-t-space. Brightness changes in this space are modeled
as total differential of the intensity data. A pinhole camera model is used to project
a dynamic surface patch into the image. This yields equations for x- and y-position
of the patch as a function of camera position and time. Plugging the linearized total
differentials of x and y into the total differential of the intensity results in the sought
model. A crucial point here is the correct handling of neighbor locations. We model
it by back-projection of the pixel grid to the surface in the scene (see Secs. 5.1.3 and
5.1.4). A detailed derivation of the modified model can be found in Section 5.1.

In order to evaluate the model we use a parameter estimation procedure as
proposed in Sec. 3.3.2. Adaptations needed here are presented in Section 5.2.

Quantitative experiments (Sec. 5.3) use synthetic data with ground truth available
generated with the sequence generator presented in App. B. For more realistic scenes
with ground truth available we use another cube sequence rendered by POV-Ray
[15] in 8bit-integer accuracy. Finally we demonstrate improvements coming from
modeling rotation on the Castor Oil Plant sequences and compare results to Scene

1In case of a 2D camera model we achieve a 5D affine optical flow model with local camera
displacement coordinates Δsx and Δsy
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Flow and Range Flow.

5.1 Model Derivation

We briefly review the derivation of the Affine Model for translational motion and its
extension to 4D affine optical flow. Afterwards we will model rotational motion of
the patch.

5.1.1 Surface Patch Model

Following Sec. 3.3 we model a surface patch at world coordinate position (X0, Y0, Z0)
as a function of time t by⎛

⎝ X
Y
Z

⎞
⎠ =

⎛
⎝ X0 + UXt+ΔX

Y0 + UY t+ΔY
Z0 + UZt+ ZXΔX + ZYΔY

⎞
⎠ (5.1)

where ZX and ZY are surface slopes in X- and Y -direction for time t = 0 and
U = (UX , UY , UZ) is the velocity of the patch. The surface normal is then n =
(ZX , ZY ,−1).

5.1.2 Camera Model

We use pinhole cameras at world coordinate positions (s, 0, 0), looking into Z-direction(
x
y

)
=

f

Z

(
X − s
Y

)
(5.2)

Sensor coordinates x, y are aligned with world coordinates X, Y . Camera position
space is sampled equidistantly using a 1D camera grid. Modeling steps taken in
following can also be applied for a 2D camera grid (e.g., [45, 77]), cmp. [62]. Here
we focus on 1D grids and combine data acquired by all cameras into one 4D data set
equidistantly sampling the continuous intensity function I(x, y, s, t).

5.1.3 Pixel-Centered View

Parameter estimation at a 4D pixel x0 = (x0, y0, s0, t0) is done using the acquired
image data I(x) := I(x, y, s, t) in a local neighborhood Λ, with x := (x, y, s, t)T.
Consequently we need to know the surface position X for each 4D pixel, i.e., X(x).
Using a pinhole camera (5.2) we know(

X(x)
Y (x)

)
=

Z(x)

f

(
x
y

)
+

(
s
0

)
. (5.3)
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Figure 5.1: Relationship between X0, Z(0) (left) and Zt and Zs (right).

In order to derive an expression for Z(x) we fit a tangent plane with surface normal
n = (ZX , ZY ,−1)T to the point X(x). The intersection of this tangent plane with the
Z-axis is then Z(0, 0, 0, t), and Z(0, 0, 0, t) = Z(0) + Ztt for a constantly translating
plane, where 0 := (0, 0, 0, 0)T. Consequently Z(x) can be expressed as

Z(x) = Z(0) + ZXX(x) + ZY Y (x) + Ztt

⇔ Z(x) = Z(0)+ZXs+Ztt
1−ZX

x
f
−ZY

y
f

(5.4)

where we used (5.3) to substitute X(x) and Y (x). Combining (5.3) and (5.4) yields

X(x) = Z(0)+ZXs+Ztt
f−ZXx−ZY y

⎛
⎝ x

y
f

⎞
⎠+

⎛
⎝ s

0
0

⎞
⎠ . (5.5)

Equation (5.5) extends the formulation in [62], where X only depends on local image
coordinates x and y. Figure 5.1 depicts the relationship between X(x) and Z(0) for
a point in the central camera and frame (Fig. 5.1a) and for varying s and t (Fig. 5.1b).
Obviously depth seen at the principal point of a camera changes due to motion of
the camera or the patch. These changes are addressed by Zs and Zt.

5.1.4 Projecting the Pixel Grid to the Surface

A pixel x in the local neighborhood Λ used for parameter estimation is given by
x = x0+Δx = (x0+Δx, y0+Δy, s0+Δs, t0+Δt)T. The surface patch center X0 by
definition is the back projection of the neighborhood center point x0 to the surface.
Consequently neighbor points of X0 on the surface given by ΔX = (ΔX,ΔY,ΔZ)
are projections of the cameras pixel grids to the moving surface and we need to
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5 Modeling Rotation

derive ΔX(Δx). In order to stay on the surface, we model ΔZ = ZXΔX + ZYΔY ,
cmp. (5.1). Further we know from (5.1) that

ΔX = X−X0 −Ut (5.6)

where X is a point on the surface at a given point in time t, X0 is the surface patch
center at time t0 = 0, and ΔX is the distance between X and the point X0 +Ut
where the patch center moved to. The distance between X and X0 can expressed by
the linearization

X−X0 =
∂X

∂x
Δx+

∂X

∂y
Δy +

∂X

∂s
Δs+

∂X

∂t
Δt . (5.7)

The partial derivatives of X(x) are (cmp. (5.5))

∂X

∂x
=

Z

fc

⎛
⎝ 1− ZY

y
f

ZX
y
f

ZX

⎞
⎠ ,

∂X

∂y
=

Z

fc

⎛
⎝ ZY

x
f

1− ZX
x
f

ZY

⎞
⎠

∂X

∂s
=

1

c

⎛
⎝ c+ ZX

x
f

ZX
y
f

ZX

⎞
⎠ ,

∂X

∂t
=

Zt

fc

⎛
⎝ x

y
f

⎞
⎠

(5.8)

where we used the notation

c = 1− ZX
x

f
− ZY

y

f
. (5.9)

Substituting (5.7) and (5.8) in (5.6) yields the sought expression for ΔX(Δx).

5.1.5 Brightness Change Model

We model intensity changes analog to Chap. 4, i.e., dI of a surface element for such
a multi-dimensional data set is

dI = Ixdx + Iydy + Isds + Itdt
= I(g1 + g1,xΔX + g1,yΔY + g2t)dt .

(5.10)

We denote I∗ = ∂I
∂∗ for partial derivatives of the image intensities I. In the following

we use notation g = (g1 + g1,xΔX + g1,yΔY + g2t) for the intensity change function.
This brightness change constraint equation (BCCE) models spatially constant and
spatially varying brightness changes stemming from varying illumination.

5.1.6 Combination of Models

Following Sec. 3.3 we project the moving surface patch model to the sensor plane
using the pinhole camera model and calculate the differentials dx and dy for a given
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surface location (i.e., for constant ΔX and ΔY )(
dx
dy

)
=

f

Z

(
(UX − UZ

x
f
)dt − ds

(UY − UZ
y
f
)dt

)
. (5.11)

This equation is nonlinear in the sought for 3D parameters. Furthermore this equation
depends on ΔX and ΔY in Z. We simplify it by rephrasing f/Z via the surface
patch model (5.1), i.e., Z = Z0+UZΔt+ZXΔX+ZYΔY . Inserting Eqs. (5.6)–(5.9)
leads to

f

Z
= −ν − b1Δx− b2Δy − b3Δs− b4Δt (5.12)

with ν = − f
Z0

, b1 =
ZX

Z0c
, b2 =

ZY

Z0c
, b3 =

f
Z0

ZX

Zc
, b4 =

f
Z0

Zt

Zc (5.13)

Combination of the proposed models is done analog to [62]. In the first step
Equations (5.12), (5.1) and (5.6)–(5.9) are plugged into (5.11), using local coordinates
x = x0+Δx. Sorting by differentials and Δ-terms, and ignoring higher order Δ-terms
we substitute dx and dy in the brightness change model (5.10). This yields

dx = f
Z

[(
UX − x

fUZ

)
dt − ds

]
= −ν

(
UX − x

fUZ

)
dt

−
[
b1

(
UX − x0

f UZ

)
+ UZ

Z0

]
Δxdt

−
[
b2

(
UX − x0

f UZ

)]
Δydt

−
[
b3

(
UX − x0

f UZ

)]
Δsdt

−
[
b4

(
UX − x0

f UZ

)]
Δtdt

+ νds + b1Δxds + b2Δyds

+ b3Δsds + b4Δtds

(5.14)

and
dy = f

Z

(
UY − y

fUZ

)
dt

= −ν
(
UY − y0

f UZ

)
dt

−
[
b1

(
UY − y0

f UZ

)]
Δxdt

−
[
b2

(
UY − y0

f UZ

)
+ UZ

Z0

]
Δydt

−
[
b3

(
UY − y0

f UZ

)]
Δsdt

−
[
b4

(
UY − y0

f UZ

)]
Δtdt

(5.15)
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Urot
arotΩ

P
O

Figure 5.2: Rotation Urot at distance P due to angular velocity vector Ω.

5.1.7 Rotation

We define rotation of a surface patch by angular velocity vector Ω = (ΩX ,ΩY ,ΩZ)
located at its central point X0 = (X0, Y0, Z0). Figure 5.2 shows general parameters
of rotational motion, namely angular velocity vector Ω, rotation center O, distance
to the rotation axis P, velocity Urot and angular acceleration arot. Rotational motion
Urot may be obtained by

Urot = Ω×P. (5.16)

Overall translational and rotational velocity U of points on the surface patch, i.e.,
P = ΔX, is then determined by

U = N+Urot = N+Ω×ΔX (5.17)

with translational velocity N = (NX , NY , NZ)
T, distance to the rotation center ΔX

and angular velocity Ω.
Equation (5.17) defines translation of and rotation around the surface patch

center. For general rotational motion this model is not sufficient, as the true center
of rotation may not coincide with the patch center. This leads to accelerated motion
of the patch center. We approximate this non-constant motion by acceleration A

U = N+At+Ω×ΔX. (5.18)

We address only constant acceleration, whereas acceleration coming from rotation
is non-constant. This could be modeled by estimation of the true rotation center
introducing 3 additional parameters analog to (5.17).

5.1.8 The Range Constraint, Zt, b4, and why (5.5) still holds
under Rotation

Flow parameter b4 (5.13) linearly depends on Zt, i.e., the partial derivative of Z
with respect to time. We are not explicitly interested in Zt, therefore we want to
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express it using parameters we are interested in. We know that UZ := dZ/dt. The
time derivative of the first equation in (5.4) therefore yields

Zt = UZ − ZXUX − ZY UY (5.19)

for translating planes, i.e., for constant surface slopes ZX and ZY . This is the so-called
range constraint known from [69] (cmp. (3.5)). Obviously surface slopes change when
a surface rotates and the range constraint becomes

Zt = UZ − ZXUX − ZY UY −XZX,t − Y ZY,t (5.20)

ZX,t and ZY,t are first order time derivatives of ZX and ZY .
Equation (5.4) was derived for translating surfaces. We model the change in (5.4)

due to rotation by replacing ZX and ZY by their time depending counterparts ZX(t)
and ZY (t). We approximate the change of the surface normals by first order Taylor
expansions ZX(t) = ZX(0) + ZX,tt and ZY (t) = ZY (0) + ZY,tt and derive for (5.4)

Z(x) = Z(0) + ZX(t)X(x) + ZY (t)Y (x) + Ztt

⇔ Z(x) −ZX(0)Z(x)
x
f
− ZY (0)Z(x)

y
f

= Z(0) + ZXs+ (Zt + ZX,tX(x) + ZY,tY (x))t

⇔ Z(x) =
Z(0)+ZX(0)s+(Zt+ZX,tX(x)+ZY,tY (x))t

c

(5.21)

Substituting Zt using (5.20) yields

Z(x) = Z(0)+ZXs+(UZ−ZXUX−ZY UY )t
c

⇔ Z(x) = Z(0)+ZXs+Z̃tt
c

(5.22)

where now Z̃t is defined by the standard range constraint, i.e.,

Z̃t := UZ − ZXUX − ZY UY . (5.23)

We conclude that (5.5) still holds for a first order model of rotational motion, if
Z̃t ignores surface slope changes due to rotation. Consequently Zt in (5.13) also
becomes Z̃t.

5.1.9 A 4D-Affine Model

Collecting terms and equations derived so far leads to the sought 4D affine model.
We derive it by inserting (5.6) in (5.18), substitution of velocity vector U in (5.14)
and (5.15). Ignoring higher order terms yields representations of the elements of
the 4 dimensional optical flow model (5.24) with parameters (5.25). The partial
derivatives of world coordinates in (5.25) are given in (5.8).
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∇TI

⎡
⎢⎢⎣
(

uxdt + νds
uydt

)
+

(
a11dt + b1ds a12dt + b2ds a13dt + b3ds a14dt + b4ds

a21dt a22dt a23dt a24dt

)⎛
⎜⎜⎝

Δx
Δy
Δs
Δt

⎞
⎟⎟⎠
⎤
⎥⎥⎦

+Isds + Itdt = Igdt
(5.24)

ux = −ν
(
NX − x0

f NZ

)
uy = −ν

(
NY − y0

f NZ

)
a11 = −ν

[
ΩY

∂Z
∂x − ΩZ

∂Y
∂x − x0

f

(
ΩX

∂Y
∂x − ΩY

∂X
∂x

)− NZ

Z0

]
−b1

(
NX − x0

f NZ

)
a12 = −ν

[
ΩY

∂Z
∂y − ΩZ

∂Y
∂y − x0

f

(
ΩX

∂Y
∂y − ΩY

∂X
∂y

)]
−b2

(
NX − x0

f NZ

)
a13 = −ν

[
ΩY

∂Z
∂s − ΩZ

∂Y
∂s − x0

f

(
ΩX

∂Y
∂s − ΩY

∂X
∂s

)] −b3

(
NX − x0

f NZ

)
a14 = −ν

[
ΩY

∂Z
∂t − ΩZ

∂Y
∂t − x0

f

(
ΩX

∂Y
∂t − ΩY

∂X
∂t

)
+
(
AX − x0

f AZ

)]
−b4

(
NX − x0

f NZ

)
a21 = −ν

[
ΩZ

∂X
∂x − ΩX

∂Z
∂x − y0

f

(
ΩX

∂Y
∂x − ΩY

∂X
∂x

)] −b1

(
NY − y0

f NZ

)
a22 = −ν

[
ΩZ

∂X
∂y − ΩX

∂Z
∂y − y0

f

(
ΩX

∂Y
∂y − ΩY

∂X
∂y

)
− NZ

Z0

]
−b2

(
NY − y0

f NZ

)
a23 = −ν

[
ΩZ

∂X
∂s − ΩX

∂Z
∂s − y0

f

(
ΩX

∂Y
∂s − ΩY

∂X
∂s

)] −b3

(
NY − y0

f NZ

)
a24 = −ν

[
ΩZ

∂X
∂t − ΩX

∂Z
∂t − y0

f

(
ΩX

∂Y
∂t − ΩY

∂X
∂t

)
+
(
AY − y0

f AZ

)]
−b4

(
NY − y0

f NZ

)
(5.25)

5.2 Parameter Estimation

We estimate parameters in three steps. 1. We solve for 4D affine optical flow
parameters ν, b1, . . ., b4, ux, uy, a11, . . ., a24 and brightness change parameters g1,
g1,x, g1,y and g2 using the total least squares method described in [62]. 2. We solve
for depth Z0, and surface normals ZX and ZY , and Zt using (5.13), where focal length
f has to be known e.g., from a calibration step. This allows to calculate c from (5.9)
and partial derivatives of world coordinates from (5.8). 3. We solve for translation
N, and rotation Ω if desired, using the equations in (5.25) or – as reference methods
– using Scene Flow from Sec. 3.1 or Range Flow from Sec. 3.2. Acceleration A can
only be estimated up to 1 degree of freedom as we have only 2 equations (the ones
for a14 and a24) for 3 parameters AX , AY , AZ . Equations (5.25) and (5.13) being an
overdetermined system of equations, there are several ways to solve for N and Ω
using a standard least squares estimation scheme. For our experiments we select the
following submodels by selecting some or all equations from (5.25) and (5.13), or
by removing terms when parameters like rotation or acceleration are not estimated.
This is equivalent to not modeling these parameters or setting them to zero.
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We use the following submodels

2D OF trans. estimates N only, using equations for ux, uy, a11, a12, a21, a22.

2D OF rot. estimates N and Ω using equations for ux, uy, a11, a12, a21, a22.

2D OF trans. and .../2D OF rot. and ... using additional equations indicated by
dots (...)

4D OF trans. estimatesN only, using all 11 equations containing motion information,
10 from (5.25) and 1 from (5.13), i.e., the one for b4.

4D OF rot. estimates N and Ω only, using the 11 equations.

4D OF estimates N, Ω, and A using the 11 equations.

Parameters that are not solved for are set to zero. 4D OF uses two equations more
than 2D OF rot. and a13, a23, b4 but estimates A in addition. We therefore get
identical results for N and Ω using the two models. Thus we do not show results for
4D OF in the experiments below.

5.3 Experiments

In a first experiment we use synthetic sinusoidal sequences for systematic error
analysis. Then performance of different models is compared on more realistic data
with ground truth available, i.e., a translating and rotating cube rendered with
POV-Ray [15]. Finally we show estimation results of a sequence showing a rotating
plant leaf. In all experiments we minimize systematic discretization errors coming
from derivatives by using optimized 5-tab derivative filter sets presented in [54].

5.3.1 Sinusoidal Pattern

For systematic error analysis we render a surface patch with sinusoidal pattern with
the Sequence Generator (cmp. App. B), where geometry and intensities mimic typical
settings used in our actual lab experiments with plants. The 32-bit float intensity
values are in the range [50; 150]. Figure 5.3 shows first and last frame of such an input
sequence with surface patch parameters Z0 = 100 mm, ZX = 0.6, and ZY = −0.5,
and motion parameters N ≈ (0.0073,−0.0037, 0.06)T mm/frame and ω = 0.003
degree/frame around rotational axis v = (2, 3, 2)T, i.e., Ω = ωv. In each experiment
we vary only one of these parameters. The synthetic sensor contains 501× 501 pixels
with width and height 0.0044 mm. The focal length of the projective camera is set
to f = 12 mm. We generate data for 9 cameras, positioned horizontally as a 1D,
equidistantly spaced camera grid with displacement of 0.5 mm. In order to keep
optical flow in camera displacement direction below 1 pixel/displacement, we preshift
the data by 13 pixel/displacement. The effective image size shrinks to 301 × 301
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a b

Figure 5.3: a: First and b: last frame of the input sequence with translation and
rotation.

pixel due to border effects. Neighborhood Λ is implemented by a Gaussian filter with
size 65× 65× 5× 5 and standard deviations 19× 19× 1× 1 in x, y, s, t-directions.
In order to compare performance of models, we use the average angular error (see
App.A)

AAE =
1

N

N∑
i=1

arccos
(
rt(i)

Tre(i)
)

(5.26)

for N pixel with a minimum distance of 60 pixel to the nearest border, true motion
rt and estimated motion re, with r = (NT, 1)T for translation and r = (ΩT, 1)T for
rotation.

Figure 5.4 shows average angular errors of translational motion estimates for
sequences without (top) and with (bottom) rotation. We show errors for increasing
translational motion NZ in Figs. 5.4a and c and for increasing standard deviation of
noise σn in Figs. 5.4b and d. Figures 5.4a and b demonstrate that all models perform
almost equally well for sequences without rotation. Scene Flow performs best in
almost all cases. Affine models perform better when using more affine parameters (4D
OF trans./rot., and 2D OF rot. and a13, a23, b4). Range Flow performs only slightly
better than affine models for low noise sequences. In case of rotation (Figs. 5.4c and
d) Range Flow and the translational models yield high errors compared to rotational
models, Scene Flow again performs best. However, comparing rotational models, 4D
OF rot. performs worst. This indicates that modeling A in the equations for a14 and
a24 ((5.25)) or not using a14 and a24 (i.e., 2D OF rot. and a13, a23, b4) is beneficial. In
case of noise Scene Flow shows best performance up to σn = 10. Rotational models
using 4D affine terms (2D OF rot. and a13, a23, b4 and 4D OF rot.) yield better
results than the 2D model (2D OF rot.). 4D OF trans. shows considerable better
performance than Range Flow, despite for NZ = 0 and no noise, and performs as
good as the best rotational models for 1 < σn < 10. In Fig. 5.5 we compare average
angular errors of translational (Fig. 5.5a) and rotational (Figs. 5.5b, c and d) motion
parameters for different rotation models. Translational models and Range Flow are
shown for reference in Fig. 5.5a. Figures 5.5c and d show angular errors of rotational
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Figure 5.4: Average angular error (AAE) of N versus increasing NZ (left) and σn

(right). a and b: without rotation, c and d: with rotation.

parameters for a rotating sequence and increasing NZ and σn, respectively, i.e., the
Ω counterparts of Figs. 5.4c and d.

The figures demonstrate that incorporating the affine parameters a14 and a24 in
4D OF rot. without modeling of acceleration significantly increases errors. Figures
5.5a and b show average angular errors of translational and rotational parameters for
sequences with increasing ω. Rotational models without a14 and a24 perform similar
and up to three orders of magnitude better than Range Flow and the translational
models, only Scene Flow yields lower errors.

We conclude that modeling rotation yields almost always significantly lower or at
least similar errors as the translational models and Range Flow. Scene Flow performs
best in all cases, but is not able to estimate angular velocity. Using a14 and a24
without modeling acceleration A should be avoided.
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Figure 5.5: a: AAE of N versus ω, and AAE of Ω versus b: ω, c: NZ and d: σn.

5.3.2 Synthetic Cube

The synthetic cube sequence allows us to compare models on more realistic data
with ground truth available. The cube is moving with N = (−0.2, 0,−1)T mm/frame
and rotates around its Y -axis with ω = 0.4 degrees/frame. The cube is covered with
a noise pattern in order to make local estimation reliable. Neighborhood Λ is the
same as for the sinusoidal sequences. The 1D camera grid contains 9 cameras with a
displacement of 5 mm. Figure 5.6a and b show first and last frame of the central
camera with regions where errors are evaluated. Ground truth motion is depicted in
Fig. 5.6c.

Figures 5.6d–i show estimation results of Scene Flow, Range Flow, the translational
models 2D OF trans. and 4D OF trans. and the rotational models 2D OF rot. and
2D OF rot. and a13, a23, b4. The errors are amplified by a factor of 5 for better
comparison of the models. The estimates of 2D OF trans. clearly show large errors,
where estimates on the right side of the cube point in Z-direction, estimates on
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a b c

d e f

g h i

Figure 5.6: Cube moving towards camera with rotation. a and b: First and last
input frame with evaluation areas and c: ground truth motion. Motion estimates N
with amplified errors. d: Scene Flow, e: Range Flow, f: 2D OF trans., g: 4D OF
trans., h: 2D OF rot., and i: 2D OF rot. and a13, a23, b4.

the left side of the cube are not visible because they point inwards the cube. Also
estimates of the rotational model 2D OF rot. suffer from high and non-uniform
errors. Estimates of Range Flow are more accurate, but distorted near borders of
the cube. Models 4D OF trans. and 2D OF rot. and a13, a23, b4 yield more accurate
results. Estimates of the translational model are still distorted, mainly on the left
side of the cube. Estimation results of Scene Flow best match the ground truth.

Figure 5.7 shows a rendered top view of the cube with ground truth of the
rotational parameters and estimation results using models 2D OF rot. and 2D OF
rot. and a13, a23, b4. The estimates clearly recover the true motion, where estimates
of 2D OF rot. and a13, a23, b4 are more uniform.
Table 5.1 shows angular errors for the regions depicted in Figs. 5.6a and b which
quantitatively confirm the visual impression of the rendered results. 2D OF trans.
performs better when b4, a13 and a23, or all three terms are additionally used
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a b c

Figure 5.7: Rotational motion Ω. a: Ground truth, b: estimated via 2D OF rot.
and c: estimated via 2D OF rot. and a13, a23, b4.

Table 5.1: Average angular error (AAE) and standard deviations in degrees of
translational and rotational motion parameters of regions on left and right side of
the cube (see Figs. 5.6a and b). Errors or standard deviations above 1◦ (AAE) are
indicated in red, below 0.1◦ (AAE) in green.

motion model affine parameters
AAE left region AAE right region

translation rotation translation rotation

Scene Flow 0.36± 0.09 n/a 0.12± 0.04 n/a

Range Flow 8.86± 0.69 n/a 1.77± 0.15 n/a

2D OF 112± 1.01 n/a 19.6± 0.70 n/a
2D OF + b4 1.22± 0.43 n/a 0.26± 0.15 n/a

translation 2D OF + a13,a23 1.72± 1.28 n/a 0.84± 0.55 n/a
2D OF + a13,a23,b4 0.91± 0.64 n/a 0.51± 0.35 n/a

4D OF 0.91± 0.64 n/a 0.51± 0.35 n/a

2D OF 6.85± 6.24 0.018± 0.01 1.81± 1.42 0.004± 0.01
translation 2D OF + b4 0.52± 0.19 0.017± 0.01 0.25± 0.16 0.004± 0.01

and 2D OF + a13,a23 0.93± 0.37 0.017± 0.01 0.20± 0.10 0.004± 0.01
rotation 2D OF + a13,a23,b4 0.67± 0.29 0.017± 0.01 0.22± 0.12 0.004± 0.01

4D OF 0.67± 0.29 0.017± 0.01 0.22± 0.12 0.004± 0.01

for estimation. Otherwise estimates are heavily distorted. The same is true for
translation estimates with models also estimating rotation. Rotation estimates are
equally well for all rotation models. Errors of Range Flow are lower than for 2D
OF trans., but significantly higher than for models incorporating more affine terms.
Scene Flow shows best performance for translational motion estimation.

5.3.3 Castor Oil Plant

Figure 5.8 shows estimation results for the Castor Oil Plant sequence (cmp. Sec. 3.4).
Neighborhood Λ is implemented using a Gaussian filter with size 77 × 77 × 5 × 5
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a b

c d

e f

Figure 5.8: Motion estimation results for the plant leaf sequence. a Scene Flow, b
Range Flow for varying illumination, c: 2D OF trans., d: 4D OF trans., e: 2D OF
rot. and f: 2D OF rot and a13,a23 and b4.

and standard deviation 23× 23× 1× 1 in x, y, s, t-direction.

The leaf rotates around its node where it is attached to the stem. This results
in a visible motion towards the camera and to the right, while the shadow area
caused by the top leaf decreases. We compare estimation results of the translational
model (4D OF trans. and of the rotational models with the estimates from Sec. 4.4,
i.e., Scene Flow, Range Flow and the standard translational model (2D OF trans.).
Figure 5.8 clearly shows the improvements in motion estimation, when more affine
parameters (4D OF trans. and 2D OF rot and a13,a23 and b4) are incorporated in
the estimation. Both models perform visibly better than Range Flow, because they
produce less outliers. Using the rotational model estimation results are smoother,
but Scene Flow still yields more homogeneous results especially in the shadow area
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a b

Figure 5.9: Estimates of angular velocities for the plant leaf sequence. a: 2D OF rot.
and b: 2D OF rot and a13,a23 and b4.

of the leaf.
Figure 5.9 shows estimation results for angular velocity Ω. Estimates of both

models look heavily distorted. Ground truth is not available, but we assume that
motion and unfolding of the leaf does not lead to a smooth angular vector field.
Nevertheless, outliers are present and demonstrate that the rotational model is not
robust enough for reliable estimation of angular velocity in plant leaf sequences.

5.4 Conclusions

In this chapter we presented a 4D affine optical flow model and how the parameters
of this model can be explained by real world parameters. Based on a rigid surface
patch we modeled translation, acceleration and rotation. The rotational model
improves estimation results in almost all cases and additionally allows to estimate
rotational parameters. Synthetic experiments showed that modeling acceleration
is not sufficient to estimate rotation reliably and should therefore not be used if
rotation occurs in the sequence. The 4D Affine Model and its explanation of real
world parameters improved accuracy of motion estimates on synthetic and real data
compared to Range Flow. Scene Flow still yields more reliable results. Therefore the
estimation method of Scene Flow should be adapted to the Affine Model. We will do
this in the next section.
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Chapter 6

5D-Affine Scene Flow Model

In the previous sections we extended the Affine Model to handle (1) sloped surfaces
(Sec. 3.3), (2) brightness changes (Sec. 4.3.3), and (3) rotational motion (Chap. 5).
The 4D-Affine Model already implicitly includes the range constraint (Sec. 5.1.8) and
showed better performance than Range Flow, although rotation/acceleration could
be modeled for a neighborhood (Sec. 5.2) only. In this section we will combine the
Affine Model with the estimation technique of Scene Flow and derive a formulation
for the complete 5D-Affine Scene Flow Model. Towards this end, we extend the
brightness change model proposed in Chap. 4 to handle brightness changes coming
from camera motion. This leads to an estimation technique which allows estimation
of all parameters including acceleration and/or rotation of patch origins.

6.1 5D-Affine Model

In this section we will extend the Affine Model presented in Sec. 5.1 to handle camera
displacement in sx and sy direction. In a setup where a spotlight is mounted on the
camera, brightness changes due to motion of the camera occur. We will derive a
brightness change model according to Chap. 4 in order to handle brightness changes
caused by motion of cameras with fixed spotlights.

In case of camera motion the direction of reflectance changes, i.e., nr becomes
nr(sx, sy). This leads to the visible light intensity

L(X(ΔX,ΔY, t), sx, sy, t) = B(X(ΔX,ΔY, t),ni(t),nr(sx, sy))E(ΔX,ΔY, t,ni(t))
(6.1)

with the patch’s bidirectional reflectance distribution function (BRDF) B and in-
cident light irradiance E (cmp. (4.8)). We model changes of the BRDF due to
smoothly changing reflectance direction nr by smooth functions depending on camera
displacement, i.e., hB,sx(sx) with hB,sx(0) = 1 and , hB,sy(sy) with hB,sy(0) = 1. We
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obtain

B(X(ΔX,ΔY, sx, sy, t),ni(t),nr(sx, sy)) =

B(X(ΔX,ΔY, 0, 0, 0),ni(0),nr(0, 0))hB,sx(sx)hB,sy(sy)hB,t(t) .
(6.2)

BRDF B depends on three smooth functions hB,sx(sx), hB,sy(sy) and hB,t(t) instead
of hB,t(t) when modeling only temporal changes as in Chap. 4. However, derivation
of the visible intensity steps is analog to Chap. 4. This leads to

I(X(ΔX,ΔY, t), sx, sy, t) = I(X(ΔX,ΔY, 0), 0, 0, 0) exp(hI(ΔX,ΔY, sx, sy, t))
(6.3)

where

hI(ΔX,ΔY, sx, sy, t) := ln(hB,sx(sx)hB,sy(sy)hB,t(t)hE(ΔX,ΔY, t)) . (6.4)

The sought temporal derivative of (6.3) is thus

dI = I(X(ΔX,ΔY, 0), 0, 0, 0) exp(hI(ΔX,ΔY, sx, sy, t))dh I(ΔX,ΔY, sx, sy, t)

= I(X(ΔX,ΔY, t), sx, sy, t)dh I(ΔX,ΔY, sx, sy, t) .
(6.5)

We introduce an approximation of hI explicitly modeling spatial variations due
to camera displacement and time still respecting hI(ΔX,ΔY, 0, 0, 0) ≡ 0. The
multiplicative behavior between hB,sx , hB,sy and hB,t in (6.4) leads to a sum of power
series

hI(ΔX,ΔY, sx, sy, t) ≈

h(ΔX,ΔY, sx, sy, t,g) :=
∑

m∈[sx,sy ,t]

2∑
i=0

(gm,i + gm,i,xΔX + gm,i,yΔY )mi .
(6.6)

The total derivative of h is then

f(ΔX,ΔY, sx, sy, t,g) := dh (ΔX,ΔY, sx, sy, t,g)

=
∑

m∈[sx,sy ,t]

2∑
i=1

i (gm,i + gm,i,xΔX + gm,i,yΔY )mi−1dm .

(6.7)
We substitute sx = sx − sx,0 = Δsx, sy = sy − sy,0 = Δsy and t = t − t0 = Δt in
(6.7) and omit higher order terms. We get

f(ΔX,ΔY, sx, sy, t,g) =

g1 + g1,xΔX + g1,yΔY + 2
(
gsx,2Δsxdsx + gsy ,2Δsydsy + gt,2Δtdt

)
(6.8)
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with
g1 = gsx,1dsx + gsy ,1dsy + gt,1dt

g1,x = gsx,1,xdsx + gsy ,1,xdsy + gt,1,xdt

g1,y = gsx,1,ydsx + gsy ,1,ydsy + gt,1,ydt .

(6.9)

Inserting (6.8) in (5.24) and adding camera displacement directions sx and sy, we
obtain the full Affine Model (6.10), where ∇̃I = (Ix, Iy, I)

T and affine parameters
are given by (6.12), (6.13). Brightness change parameters can be derived by (6.9)

∇̃TI

⎡
⎢⎢⎢⎢⎣
⎛
⎝ uxdt + νdsx

uydt + νdsy
− (

gt,1dt + gsx,1dsx + gsy,1dsy
)
⎞
⎠+A

⎛
⎜⎜⎜⎜⎝

Δx
Δy
Δsx
Δsy
Δt

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦+ Isxdsx + Isydsy + Itdt = 0

(6.10)

A =

⎛
⎝ a11dt + b1dsx a12dt + b2dsx a13dt + b3dsx a14dt + b4dsx a15dt + b5dsx

a21dt + b1dsy a22dt + b2dsy a23dt + b3dsy a24dt + b4dsy a25dt + b5dsy
gΔx gΔy gΔsx gΔsy gΔt

⎞
⎠

(6.11)
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ν = − f
Z0

, b1 = ZX
Z0c

, b2 = ZY
Z0c

b3 = f
Z0

ZX
Zc , b4 = f

Z0

ZY
Zc , b5 = f

Z0

Zt
Zc

(6.13)

c = 1− ZX
x0
f − ZY

y0
f (6.14)
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and the new variables gΔi for i ∈ [x, y, sx, sy, t] by appropriate substitution of ΔX
and ΔY in 6.8. The partial derivatives of world coordinates can be obtained by (5.8).
This notation demonstrates, that the brightness change model has a similar behavior
as the standard affine model, but instead of the gradients of the image intensity
the intensity itself is used as input data. Moreover, the novel brightness change
model introduces only two new affine parameters (gsx,2 and gsy ,2) into the estimation
process and a new interpretation of the other brightness change parameters (g1, g1,x
and g1,y) compared to the old brightness change model.

6.2 Parameter Estimation

Scene Flow combines translational optical flow estimates from several cameras in
order to solve the aperture problem of Scene Flow (cmp. (3.4)). We extend (3.4) for
a 2D camera grid to handle affine optical flow parameters, i.e., parameter b5 and
a = (a11, a12, a13, a14, a15, a21, a22, a23, a24, a25)

T. Additional equations constraining
Scene Flow then allow to solve for acceleration (AX , AY , AZ)

T. We obtain for a
camera grid with N calibrated cameras

BV = U ,with V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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ΩY

ΩZ
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ux,1

uy,1

a1

b5,1
ux,2

uy,2

a2
...

b5,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.15)

with affine parameters ai of the optical flow in camera i. Matrix B is created out of
appropriate entries of matrix A and parameters ux, uy as defined in (6.12).
Not all parameters of the Affine Model may be available in all cameras. We compute
the full model, i.e., with affine parameters containing Δsx and Δsy (a13,a14,a23,a24
and b5) only for the central camera. For all other cameras we omit these parameters
and get 8 optical flow parameters each.

6.3 Experiments

In a first experiment we use synthetic sinusoidal sequences for systematic error
analysis. Then performance of different models is compared on more realistic data
with ground truth available, i.e., a translating and rotating cube with varying
illumination in time and camera displacement direction, rendered with POV-Ray
[15]. Finally we show estimation results on the previous introduced Castor Oil
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Plant sequence and another sequence showing a rotating tobacco plant leaf. In all
experiments we minimize systematic discretization errors coming from derivatives by
using optimized 5-tab derivative filter sets presented in [54].
In order to test performance of models and influence of acceleration we compare
Scene Flow and Range Flow with the models1

Affine Model Trans. estimates N using equations ux,uy,a11,a12,a21 and a22, i.e.,
standard Affine Model,

Affine Model Trans. Stab. estimates N using all equations from (6.12), and b5,

Affine Model Rot. estimates N and Ω using equations ux,uy,a11,a12,a21 and a22,

Affine Model Rot. Stab. estimates N and Ω using all equations from (6.12), and b5,
except a15 and a25,

Affine Scene Flow Model extends the Affine Model Rot. Stab. by additionally using
equations ux,uy,a11,a12,a21 and a22 of all other cameras and

Affine Scene Flow Model Acc. extends the Affine Scene Flow Model by additionally
using equations a15 and a25 of all cameras and estimates A.

6.3.1 Sinusoidal Pattern

For systematic error analysis we render a surface patch with sinusoidal pattern using
the Sequence Generator (cmp. App.B). The parameters of the sequence are similar
to the parameters used in previous experiments (cmp. Sec. 5.3). Additionally we add
acceleration of the patch center A = (0.002,−0.001, 0.003)T mm/frame2. In each
experiment we vary only one of the parameters. Neighborhood Λ is implemented by
a Gaussian filter with size 65× 65× 5× 5 and standard deviations 19× 19× 1× 1
in x, y, s, t-directions. In order to compare performance of models, we use the
average angular error (see App.A) for translational (AAEN ), rotational (AAEΩ) and
acceleration (AAEA) parameters.

Figure 6.1 shows average angular errors for sequences with increasing translational
velocity NZ (left) and with increasing acceleration AZ (right). Figures 6.1a and b
demonstrate that all models based on Scene Flow, i.e., Scene Flow and the Affine
Scene Flow Model with and without acceleration, perform similar and best of all
models almost everywhere. Only in case of small patch motion towards the camera
the Affine Model Rot. Stab. performs slightly better. The Affine Model Rot. yields
best results when acceleration is large. Range Flow, the Affine Model Trans. Stab.
and the Affine Model Trans. yield highest errors in both cases. Models based on
Scene Flow show high performance also for estimation of rotational parameters (cmp.
Figs. 6.1c and d). The Affine Scene Flow Model Acc. performs slightly worse than the

1If not stated differently, all models are extended to handle varying illumination as derived in
Chap. 4.
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Figure 6.1: Average angular error of a and b: translational (AAEN), c and d:
rotational (AAEΩ) and e and f: acceleration (AAEA) parameters versus increasing
NZ (left) and AZ (right).
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Figure 6.2: Average angular error of translational (AAEN) and rotational (AAEΩ)
parameters versus σn.

model without acceleration. The Affine Model Rot. performs best for high NZ , the
Affine Model Rot. Stab. yields worst results. In case of increasing acceleration both
models using the estimation technique of Scene Flow perform better than the Affine
Model. Figures 6.1 e and f show that the Affine Scene Flow Model Acc. estimates
acceleration reliably for AZ < 0.1.
Figures 6.2a and b demonstrate that the increased accuracy of models using the
estimation technique based on Scene Flow also holds under noise. Translational as
well as rotational parameters are best estimated with the Affine Scene Flow Model
for typical noise values σn < 10. Errors of the other models are similar to the errors
obtained for rotational motion in Chap. 5. The model error is highest for the Affine
Model Trans. and Range Flow. The Affine Model Trans. Stab. yields lower errors
and same as the models with rotation for noise values σn > 1. Also the Affine Model
Rot. Stab. performs better than the Affine Model without stabilization. In case of
rotational motion it is the other way around. There the Affine Model Rot. yields
lower errors, but the model error is lowest for the Affine Scene Flow Model.
We conclude that the Affine Scene Flow Model in general increases stability due to
noise and estimates are more reliable compared to the Affine Model. Estimation of
acceleration is possible and additional estimation of acceleration does not have a
significant effect on the estimates.

6.3.2 Synthetic Cube

The synthetic cube sequence allows to compare models on more realistic data with
ground truth available. We use a cube sequence similar to the one used in Sec. 5.3,
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6 5D-Affine Scene Flow Model

a b c

d e f

Figure 6.3: Motion estimation of cube moving towards camera with rotation and
illumination changes. a and b: First and last frame of central camera, c: central
frame of central camera with areas used for evaluation, d and e: central frame of
first and last camera, and f: ground truth motion.

i.e., the cube is moving with N = (−0.2, 0,−1)T mm/frame and rotates around its
Y -axis with ω = 0.4 degrees/frame. Instead of a static spotlight (cmp. Chap. 4), we
add a spotlight moving with the camera, causing illumination changes in camera
displacement direction and time. Such a setup is frequently used in robotics, where
cameras and illumination units are placed at a robot’s end-effector. Neighborhood Λ
is the same as for the sinusoidal sequences. The 1D camera grid contains 9 cameras
with a displacement of 5 mm. Figures 6.4a and b show first and last frame of
the central camera and Figs. 6.4d and e the central frame of the first and the last
camera. The brightness changes in time and camera displacement direction are
clearly visible. Regions where errors are evaluated are depicted in Fig. 6.3c and
ground truth motion in Fig. 6.4f. Figures 6.4a-c show motion estimates of the
different models using the brightness change model introduced in Chap. 4. Errors
are amplified by a factor of 10 in all directions. The models depicted are the best
from the previous experiments, namely Scene Flow, the Affine Model Rot. Stab.
and the novel Affine Scene Flow Model. Results look similar for the Affine Scene
Flow Model with and without rotation, therefore we depict the Affine Scene Flow
Model Acc., only. Figures 6.4d–f show the same models using the new brightness
change model. The estimates improve for all models. The models based on Scene
Flow yield better results compared to the Affine Model. The combined Affine Scene
Flow Model shows the most homogeneous motion vector field. For all models most
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6 5D-Affine Scene Flow Model

a b c

d e f

g h i

Figure 6.4: Scaled motion estimates of cube sequence with errors amplified. a–c:
Motion estimates using the brightness change model proposed in Chap. 6 with models
Scene Flow (a), the Affine Model Rot. Stab. (b), and the Affine Scene Flow Model
Acc. (c). d–f: Motion estimates using the new brightness change model with models
Scene Flow (d), the Affine Model Rot. Stab. (e), and the Affine Scene Flow Model
Acc. (f). g–i: Scaled rotational motion estimates with amplified errors using the new
brightness change model. The Affine Model Rot. Stab. (g), the Affine Scene Flow
Model (h) and the Affine Scene Flow Model Acc. (i).

errors occur at borders. The depth reconstruction using the old brightness change
model fails as expected (cmp. Fig. 6.4a). However, errors of the motion estimates of
Scene Flow are lower as expected. This demonstrates that the Scene Flow estimation
technique is more robust with respect to false depth estimates compared to the
Affine Model. Using the Affine Model brightness changes are well compensated also
with the old brightness change model. As discussed in Sec. 6.1 this may depend
on the fact that the model for temporal brightness changes already compensates
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6.3 Experiments

parts of the brightness changes in camera displacement direction. The estimates of
rotational motion (not amplified) are depicted in Figs. 6.4j–l for the Affine Model
Rot. Stab., the Affine Scene Flow Model and the Affine Scene Flow Model Acc..
The ground truth is the same as for the cube sequence in Sec. 5.3, i.e., the vectors
should point downwards. All three models show almost similar performance and
significant differences to the ground truth only at the right border. It is most likely
that border effects cause these outliers. An appropriate estimator should avoid the
errors introduced by borders.
Quantitative results of the two regions on the left and the right side of the cube
(cmp. Fig. 6.3c) are presented in Tab. 5.1. The new brightness change model does not
influence estimates on the left side of the cube, where no brightness changes occur.
On the right side of the cube the novel BCCE improves estimates of all models but
Scene Flow. The novel combined Affine Scene Flow Model with the novel BCCE
yields best results almost everywhere on the cube. Only Scene Flow with the BCCE
proposed in Chap. 4 yields a slightly lower mean angular error for the right side of
the cube. The Affine Model Rot. Stab. shows a very small mean angular error, but
the high standard deviation depicts the uncertainty of this estimate. Also rotational
estimates of the Affine Scene Flow Model are significantly better compared to the
Affine Model Rot. Stab.. There is no significant difference visible between the Affine
Scene Flow Model with and without acceleration.
We conclude that the novel BCCE and the Scene Flow estimation technique should
be used in order to make estimation results more reliable. The Affine Scene Flow
Model yields similar performance as Scene Flow, but additionally allows to estimate
for rotational motion and acceleration.

6.3.3 Castor Oil Plant

We demonstrate the performance of the new estimation technique on the previous
presented Castor Oil Plant sequence. We choose same parameters as in Chap. 5.
Figures 6.5a–d show estimated translational motion vectors of models Scene Flow,
Range Flow, the Affine Model Rot. Stab. and the Affine Scene Flow Model Acc..
Motion vector fields of the Affine Scene Flow Model and Scene Flow are smoother
compared to Range Flow and the Affine Model. In the right part of the leaf estimates
of the Affine Scene Flow Model are more directed to the outside of the leaf, therefore
they are occluded by the leaf. The vector field estimated by Scene Flow seems to
be more smooth in this region. However, as the leaf is unfolding, estimates of the
Affine Scene Flow Model are the more likely ones. Figures 6.5e and f show estimates
of rotational motion of the Affine Model and the Affine Scene Flow Model. The
estimates are distorted in both cases, but the vector field of the Affine Scene Flow
Model looks more smooth.
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a b

c d

e f

Figure 6.5: Castor Oil Plant Sequence. Translational motion estimates of models
Scene Flow (a), Range Flow (b), the Affine Scene Flow Model wo Δt (c) and the
Affine Scene Flow Model with Δt (d). Rotational motion estimates of the Affine
Model Rot. Stab. (e) and the Affine Scene Flow Model with Δt (f).

6.3.4 Tobacco Plant

We show more estimation results using a second plant leaf sequence, imaging a
tobacco plant leaf. Three frames of the sequence are shown in Figs. 6.6a, c and e.
The leaf is marked with spots of watercolor to avoid errors coming from the aperture
problem. The maximal width of the leaf is approximately 20 mm. The leaf rotates
around the node where it is attached to the stem, causing a visible motion to the
camera and to the left. Moreover it is folding, which leads to slight motion of the
sides of the leaf to its center. In the left part of the leaf brightness changes occur due
to shadowing by other leafs. We use a camera on a moving stage to obtain 9 images
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a b

c d

e f

Figure 6.6: Tobacco leaf sequence. Left: Input frame of the central camera a:
t = t0 − 20 min, c: t = t0 min and e: t = t0 + 20 min. b, d and f: Corresponding
rendered 3D structure and surface normals estimated with the Affine Model.

from positions with a camera displacement of 1 mm. This leads to a preshift of 26
pixel. The images are taken every 2 minutes. The size of the sensor is 1600× 1200
pixel with width and height of 0.0044 mm. The focal length is 25 mm. Neighborhood
Λ is realized by a normalized Gaussian with size 121 × 121 × 5 × 5 and standard
deviation σW = 41 × 41 × 1 × 1 in x-y-sx-and t-direction. Figures 6.6b, d and f
depict 3D reconstructions and surface slopes for times t = t0 − 20 min, t = t0 min
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a b

c d

e f

Figure 6.7: Tobacco leaf sequence. a–c: Motion estimates for models Scene Flow,
Range Flow and the Affine Model without brightness modeling, d–f: Motion estimates
for Affine model using Δsxdt, using Δsxdt and Δtdsx and using Δsxdt, Δtdsx and
Δtdt respectively.

and t = t0 + 20 min obtained by the Affine Model. Reconstructed depth and surface
slopes clearly recover the true position of the leaf. Furthermore the rotation of the
leaf around its node, where it is attached to the stem, is visible.
Scaled translational motion estimates of different models are shown in Fig. 6.7.
Rendered velocity fields seem most reliable for Scene Flow (a) and the Affine Scene
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a b

Figure 6.8: Tobacco leaf sequence. Rotational estimates of a: the Affine Model Rot.
Stab. and b: the Affine Scene Flow Model with acceleration.

Flow Model (f). Estimates of Range Flow (b) and the Affine Model (c–e) are over
estimated in particular in Z-direction. This behavior was already confirmed for
motion estimation in the rotating cube sequence. Range Flow does not handle
rotation explicitly, therefore correspondences of the range constraint may fail. We
suggest that more appropriate choices of βi, i.e., the weighting of the structure
tensors, may reduce this effect (cmp. (4.25)). The standard Affine Model is based on
a patch model with translational motion only, which estimates motion in Z-direction
based on affine transformations, e.g., divergence. Rotation and folding of the leaf
leads to visible shrinking of the projection of the leaf. The Affine Model interprets
this shrinkage as motion away from the camera. The extended models using more
affine parameters (cmp. Figs. 6.7d and e) yield similar and better approximations of
the motion vector field.
Figures 6.8a and b show estimates of the rotational motion by the Affine Model Rot.
Stab. and the Affine Scene Flow Model Acc.. We depict estimates for the Affine
Scene Flow Model Acc. only, as the model without acceleration yields similar results.
The vector field of the Affine Scene Flow Model is more reliable compared to the
vector field estimated by the Affine Model. There are less outliers and the directions
of the vectors recover the true rotation and folding of the leaf.

6.4 Conclusions

In this section we proposed a novel BCCE (6.10) and combined the estimation
technique of Scene Flow with the Affine Model. The brightness change constraint
handles also brightness changes coming from camera displacement and fits well into
the general notation of the Affine Scene Flow Model. Estimation of optical flow
parameters in all cameras and combining these parameters with the estimation
of the Affine Model yields high accuracy and robustness to noise. Compared to
Scene Flow the new model yields higher accuracy and moreover allows to estimate
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rotational motion and acceleration parameters reliably. The combination with the
novel BCCE and the Affine Model, i.e., simultaneous estimation of 3D structure,
surface slopes and 3D motion, further ensures more accurate 3D surface structure
and slope estimation. Experiments on real data demonstrate that the Affine Scene
Flow Model yields superior performance compared to Range Flow, the Affine Model
and in some regions also compared to Scene Flow. The tobacco plant leaf sequence
shows that estimation of rotational parameters with the Affine Scene Flow Model is
possible.
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Chapter 7

Conclusions And Outlook

In this work we presented a highly accurate 3D motion estimation model based on
optical flow, which allows to estimate plant motion reliably. Starting from three
basic models, i.e., Scene Flow, Range Flow and the Affine Model, a new model for
simultaneous estimation of surface structure, slopes and motion has been developed
and thoroughly tested. We first summarize results and conclusions of the different
models and modifications that have been presented. Finally we discuss possible
future work.

7.1 Summary and Conclusions

Motion estimation of dynamic processes has been investigated in Chap. 2. The
typical estimation process contains at least three important tasks: model derivation,
discretization and parameter estimation. First an appropriate model of the data has
to be derived. This model sets the accuracy limits of the estimation process, i.e.,
estimation results are only as good as the model fits to the data. In this work several
motion models for optical flow have been proposed. In typical image sequences affine
transformations of the motion vector field occur, therefore at least an affine motion
model should be used. An appropriate discretization is needed in order to handle
input data and to compute input parameters, e.g., image gradients. Finally an
adequate estimator has to be chosen or developed. Chapter 2 presented several local
least squares estimators with and without handling of covariance information and
outliers. The novel robust total least squares estimator with handling of covariance
information showed best performance in estimation of affine model parameters.
Chapter 3 reviews three 3D motion estimation models based on optical flow, namely
Scene Flow, Range Flow and the Affine Model. Scene Flow and Range Flow need
3D structure information for one or more time points in order to estimate 3D
motion. Scene Flow first computes optical flow in more than two cameras. A second
estimation process yields 3D motion, which re-projections best fit to each of the
optical flows. Range Flow constrains range data of several time points and optical
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flow of one camera. A single estimation yields the 3D motion parameters. The
Affine Model starts from multi-camera image sequences. It is based on an affine
optical flow model and allows simultaneous estimation of flow parameters in camera
displacement direction and time. 3D structure, slopes and 3D motion can be derived
from these flow parameters using projective geometry. The Affine Model also allows
estimation of parameters describing the 3D neighborhood, i.e., surface slopes. This
makes the model appropriate for reliable estimation of highly accurate plant leaf
motion. Scene Flow is based on a pinhole camera model similar to the Affine Model,
but all parameters in a neighborhood are assumed constant. Synthetic experiments
showed that the Affine Model yields best results for multi-camera grids with small
baselines (≈ 0.01 % of depth). For plant measurement setups, where average depth
typically is below 1m, these baselines are physically not realizable with multiple
cameras, but with one camera on moving stages. For typical baselines (≈ 0.5 %
of depth) Scene Flow yields best results. However, all models fail on plant leaf
motion estimation. The main reason is that the models are based on standard optical
flow, which implies brightness constancy. This is well fulfilled for undirected, diffuse
light. In a laboratory setup the plant is illuminated by directed infrared LED-lights
(cmp. Chap. 3). Therefore motion of the leaf, the light source or the camera causes
brightness changes in the data.
In order to handle such brightness changes coming from varying illumination a novel
brightness change constraint has been derived in Chap. 4. The brightness change
constraint explicitly models temporal and spatially varying temporal brightness
changes. Motion estimation using the Affine Model with the novel brightness change
constraint on synthetic data with brightness changes coming from varying illumination
demonstrated the improved performance. In order to compare the novel BCCE with
other approaches an intensive evaluation and comparison with different prefilters
(highpass and homomorphic) and brightness constraints using Range Flow has been
carried out. It turns out that if the brightness constancy assumption is violated,
homomorphic prefiltering rather than linear highpass prefiltering should be used.
Nevertheless, modeling brightness changes yields slightly more accurate results. The
novel brightness constraint in combination with each of the three estimation models
yields improved results on the plant leaf sequence. Range Flow showed higher errors
near borders, while the Affine Model yields worst results compared to the other
models.
In Chap. 5 a 4D-Affine Model has been derived. This model is based on a higher
dimensional affine optical flow, which allows estimation of affine transformations in
four dimensions, i.e., in local image coordinates and in camera displacement direction
and time. It is demonstrated that the affine transformation of the disparity in time
boils down to the Range Flow constraint. Further the motion model of the 4D-Affine
Model is extended to handle rotational motion and acceleration. Transformations
of the 3D neighborhood as well as 3D motion are explained by affine optical flow
parameters. Tests on synthetic data demonstrated that the new Affine Model
outperforms Range Flow. However, Scene Flow yields lowest errors. Experiments
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showed that affine parameters describing transformations of the optical flow in time
should not be used for estimation, because acceleration parameters are not uniquely
determined by the affine parameters.
A general derivation of a 5D-Affine Model is proposed in Chap. 6. This model
handles affine transformations in 5D-data, i.e., 2D camera grid sequences, and also
brightness changes coming from motion of the camera. Further the 5D-Affine Model
is combined with the estimation technique used for Scene Flow. This leads to a high
accuracy 3D motion estimation model (Affine Scene Flow Model), which shows high
robustness. Synthetic experiments demonstrated that the novel Affine Scene Flow
Model outperforms all other models, and allows estimation not only of translational
motion parameters, but also rotational motion and acceleration parameters. The
high performance of the model was demonstrated on two real plant leaf sequences.

7.2 Future Work

The 5D-Affine Scene Flow Model has been thoroughly tested on synthetic image
data and on two real plant leaf sequences. A possible focus in future work may be
on establishing an appropriate estimation framework and embed the algorithm into
a measurement system. Apart from practical work we suggest future work on three
fundamental parts: the model, the parameter estimation and data acquisition.
Although an accurate model based on a moving surface patch has been derived, the
following extensions may further improve the accuracy.

� The affine optical flow model is based on first order approximations of surface
structure and motion. Higher order affine models have been proposed for optical
flow computation (cmp. Sec. 2.1.1). Including higher orders of optical flow
allows to more accurately approximating 3D parameters, e.g., round surfaces
or acceleration of a neighborhood. However, increasing order of the model also
leads to more parameters which have to be estimated. This could be handled
with a coarse-to-fine technique, where the order of the model is increased, if
the residual of a simpler model is above a threshold (cmp. [47]).

� The Affine Scene Flow Model showed high accuracy in estimating smooth
velocity vector fields on synthetic data. Growth is estimated based on 3D
motion vectors. Modeling growth explicitly in the affine parameters could
improve estimation results. Apart from growth other parameters of interest,
e.g., reflectance, could be modeled as well.

In this work parameters of the Affine Scene Flow Model are estimated using two
standard least squares estimators. Possible improvements of the estimation process
include the following:

� The parameter estimation of the optical flow parameters is based on standard
TLS. It was already shown in Chap. 2 that handling of outliers and incorporation
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of covariance information improves estimation. The extension of the Affine
Scene Flow Model using these estimators is straight forward. The main drawback
of the more sophisticated estimators is their computational complexity. In order
to speed up the estimation algorithm the implementation could be parallelized
and implemented on graphics processing units (GPU), which showed high
performance in optical flow computation recently [50].

� Total least squares estimation of optical flow implies motions well below one
pixel per frame. A coarse-to-fine multi-grid and/or a warping technique [49, 47]
should be integrated in the estimation process in order to allow larger motions.

� Most of the best estimators on the popular Middlebury-Benchmark [3] are global
estimators. These estimators allow incorporation of additional constraints like
smoothness of the motion vector field or the equivalence between the derivative
of depth Z and surface normals ZX and ZY . Furthermore direct estimation
of 3D parameters without estimating optical flow as an intermediate result
could be possible. Global estimators yield dense motion vector fields, but error
analysis is more difficult compared to local estimators.

� Although the Affine Model allows simultaneous estimation of optical flow
parameters in time and camera displacement direction, two estimation steps
are needed for estimation of 3D parameters. First the 3D structure and surface
slopes are estimated. 3D motion parameters are then obtained by solving an
equation system build up out of the 3D structure information and the affine
optical flow parameters. In order to solve for all parameters simultaneously a
nonlinear estimator should be developed. This leads to an iterative estimation
process, where iteratively one parameter set is kept fixed while the other
parameters are estimated.

� The two estimation processes in the Affine Scene Flow Model are solved
independently of each other. Error distributions should be forwarded to the
next estimator or the next estimation process. There are two different errors
to be handled. First the reliability of the different translational and affine
flow parameters. In general the translational parameters are more reliable
than the affine parameters, but also affine parameters in camera displacement
direction have different errors compared to affine parameters in time or local
coordinates. Reliability of parameters from different cameras in the Scene
Flow estimation technique need to be estimated and used in an appropriate
estimation scheme. The incorporation of error distributions may increase
robustness of the estimator, e.g., in case of occlusions and shadowing, as shown
for standard Scene Flow computation in [40].

� Experiments, where relative growth is estimated for fixed leafs (cmp. [63]),
showed that large temporal averaging filters increase the reliability of growth
estimation. Therefore the estimation framework should be extended to include
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temporal averaging of parameters, e.g., plant leaf motion. This may be done
in a variational framework, where smoothness constraints on parameter fields
can be expressed explicitly.

Finally we discuss important issues concerning the acquisition setup:

� The developed 5D-Affine Scene Flow Model was tested for short sequences
(5-9 frames). In future this algorithm should be used for analysis of long time
leaf motion and/or growth, i.e., more than 100 frames. Therefore a system
has to be developed, which ensures highly accurate acquisition of input data.
Experiments with moving stages showed that accuracy of displacement of ≈ 10
μm leads to significant errors that can be clearly detected when using a highly
accurate estimation scheme like the Affine Scene Flow Model. For instance
when using a small baseline of 1 mm such inaccuracies lead to an error of
1 % which directly influences estimation of disparity and therefore depth Z.
Recently 5× 5 camera arrays have been released (see [77]), which allow small
and constant baselines.

� Depending on the plant species, leafs may move, bend and fold in all possible
positions. In order to get most reliable depth and motion estimates the leaf
should be imaged fronto-parallel. Furthermore the leafs could move out of
focus. Therefore it may be beneficial to track the leaf of interest. We suggest
that a robot arm with a mounted camera array could follow the movements of
the plant.

7.3 Closure

The main focus of this work was on derivation of a highly accurate model, allowing
growth estimation of plants. The 5D-Affine Scene Flow Model showed highest
accuracy on synthetic data compared to the three discussed 3D motion estimation
models. However, a method needs not only a highly accurate model of the data, but
also an appropriate discretization, estimation framework and acquisition setup. For
instance, using a more sophisticated estimator than standard total least squares,
can significantly improve the performance of the method (cmp. Chap. 6, where the
estimation technique of Scene Flow is adapted to the Affine Model). In this context
the derivation of the 5D-Affine Scene Flow Model is an important step in order to
establish a method for plant leaf growth estimation.
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Appendix A

Average Angular Error

The angular error is a common error measure used for optical flow evaluation (cmp.
[4, 26]). A 2D motion vector u = [ux, uy]

T can be represented as a normalized

3D vector r = [r1, r2, r3]
T/

√
r21 + r22 + r23 where u = [r1, r2]

T/r3. The angular error
describes the error as an angle in 3D

AE = arccos
(
rTt re

)
(A.1)

with 3D vectors rt and re denoting the true and the estimated flow respectively.
The advantage of this error measure is, that it addresses directional and magnitude
errors simultaneously. However, the angular error measure is biased [26], because
the relation between relative and angular error depends on the magnitude of the
motion vector. That means, that for constant relative error the angular error reaches
a maximum for a displacement of 1 pixel per frame. Moreover the angular error
yields different measures for positive and negative deviations from the true value.
However, quantitative evaluation of synthetic experiments showed that the angular
error yields a reasonable error measure. The average angular error is defined for a
neighborhood of size N by

AAE =
1

N

N∑
i

arccos
(
rt(i)

Tre(i)
)

(A.2)

and may be used also for true 3D motion estimates, e.g., r = [UX , UY , UZ , 1]
T. Affine

motion parameters are in general significantly smaller than translational parameters.
Therefore angular errors of translational and affine motion parameters should be
separated, because errors in translational parameters would dominate errors in affine
motion parameters.
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Appendix B

Synthetic Testsequences

Synthetic sequences are used for systematic error analysis of 2D optical flow and
3D scene flow estimation. We model a camera with perspective projection, but
derivation of a sequence for a camera with orthogonal projection is analog. For each
image sensor element the intersection between the line of sight and the object is
calculated. Therefore the appearance of the object is specified as a translating and
rotating plane.
Following [23] a point X = (X, Y, Z)T in 3D-space is represented in homogeneous
coordinates as a 4D-vector X = (X1, X2, X3, X4)

T with X4 �= 0 by

X =
X1

X4

, Y =
X2

X4

, Z =
X3

X4

. (B.1)

Homogeneous coordinates are used to easily represent homogeneous transformations
like affine transformations or perspective projections by a 3× 4 matrix and to carry
out calculations in the projective space. Homogeneous points with X4 = 0 represent
points at infinity. For further details on homogeneous representation see [23].
The image acquired by a camera is a projection of 3D points X onto a 2D image
plane with points x. This projection can be expressed by a matrix multiplication
of 3D points X with a camera matrix K. Using a projective camera model the
corresponding point x on the image plane can be calculated by

x = K ·X , with K =

⎛
⎝ f 0 px 0

0 f py 0
0 0 1 0

⎞
⎠ (B.2)

with focal length f and coordinates of the principal point (px, py). The camera
matrix used here is sufficient to model typical CCD cameras, where skew parameter
is negligible and aspect ratio is one.
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The projected 2D point is given by

x =

⎛
⎝ x

y
1

⎞
⎠ =

⎛
⎝ f

Z
X + px

f
Z
Y + py
1

⎞
⎠ . (B.3)

A rectangular surface patch is defined by a surface normal n = (ZX , ZY ,−1)T

and its central position X0 = (X0, Y0, Z0)
T. The patch moves with translational

velocity N and rotates around a vector v = (vX , vY , vZ)
T positioned at its center

X0 with angular velocity ω. This yields a combined translational and angular
velocity of U = N + Ω × R for each point xP = (xP , yP )

T on the patch with
Ω = ωv = (ΩX ,ΩY ,ΩZ)

T and distance to the patch center R.
The surface of a patch centered at the origin is defined by P0 = (xP , yP , 0, 1)

T, where
xP = (xP , yP )

T denotes the local position on the patch. Rotation of P0 by two 3× 3
rotation matrices and one translation yields coordinates for a patch with sought for
position X0, surface normal n and motion U. Rotation matrix R0 ensures surface
normal n of the patch for t = 0. Rotation axis is given by q = (ZX ,−ZY , 0)

T and

rotation angle is ω0 = arccos(1/
√
1 + ZX

2 + ZY
2). The second matrix rotates the

patch around a vector v fixed at patch origin X0 with rotational velocity ωt. This
rotation and translation of the patch are combined in one matrix TR(t). 3D points
on the surface patch are then defined by

Ps = TR(t) ·R0 ·P0 (B.4)

with rotation matrix

R0 =

(
R(q, ω0) 0

0T 1

)
(B.5)

where

R(q, ω0) =⎛
⎝ cos(ω0) + q2X (1− cos(ω0)) qXqY (1− cos(ω0))− qZ sin(ω0) qXqZ (1− cos(ω0)) + qY sin(ω0)

qY qX (1− cos(ω0)) + qZ sin(ω0) cos(ω0) + q2Y (1− cos(ω0)) qY qZ (1− cos(ω0))− qX sin(ω0)
qZqX (1− cos(ω0))− qY sin(ω0) qZqY (1− cos(ω0)) + qX sin(ω0) cos(ω0) + q2Z (1− cos(ω0))

⎞
⎠

(B.6)

and combined rotational and translational matrix

TR(t) =

(
R(v, ωtt) X0

0T 1

)
. (B.7)

Translational motion N and acceleration A of the patch and displacement S =
[sx, sy]

T of the camera is included in⎛
⎝ X

Y
Z

⎞
⎠ (t) =

⎛
⎝ X0 +NXt+ 0.5AXt

2 − sxs
Y0 +NY t+ 0.5AY t

2 − sys
Z0 +NZt+ 0.5AZt

2

⎞
⎠ . (B.8)
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Figure B.1: a: Central image of a sinusoidal sequence, b: gray value coded depth
map and c: rendered patch in 3D with ground truth velocities.

Projection of Ps onto the image plane yields the corresponding points p

p = K ·TR(t) ·R ·P0 . (B.9)

Inversion of (B.9) returns coordinates and motion of the plane given at a certain
pixel element on the sensor. Intensity values are mapped onto the surface by

I(xP , yP ) = o+ a cos

(
2πx̂P

λ1

)
cos

(
2πŷP
λ2

)
(B.10)

x̂P = xP cos(α) + yP sin(α) (B.11)

ŷP = −xP sin(β) + yP cos(β) (B.12)

Figure B.1 shows an intensity image of a sequence, the gray value coded depth map
Z and a rendered 3D view of a patch with 3D motion vectors. The parameters of
this inclined surface are Z0 = 100 mm, ZX = 1, ZY = 0, NX = 0.00733 mm/frame,
NY = −0.00367 mm/frame, NZ = −0.6 mm/frame, f = 12 mm, λ1 = λ2 = 0.3
mm, α = β = 0�, o = 127.5 and a = 127.5. Of course, other intensity data may be
projected onto the surface, e.g., a radial sinus. Motion and acceleration of the plane
for each pixel of the sensor is calculated for quantitative error analysis. 3D motion is
given by

dX

dt
= UX = NX + AXt+ ΩYΔZ − ΩZΔY (B.13)

dY

dt
= UY = NY + AY t+ ΩZΔX − ΩXΔZ (B.14)

dZ

dt
= UZ = NZ + AZt+ ΩXΔY − ΩYΔX (B.15)
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with Ωi = viω. Optical flow components ux, uy are calculated by projecting the 3D
motion onto the image plane

ux =
f

Z

(
UX − x0

f
UZ

)
(B.16)

uy =
f

Z

(
UY − y0

f
UZ

)
. (B.17)

Affine components of the optical flow are derived by partial derivatives of the
optical flow in the corresponding dimension. Affine flow parameters caused by
camera displacement sx and sy in X-and Y -direction, i.e., disparity ν and its partial
derivatives are

ν = − f

Z
,

∂ν

∂x0

=
f

Z2

∂Z

∂x0

,
∂ν

∂y0
=

f

Z2

∂Z

∂y0
,

∂ν

∂sx
=

f

Z2

∂Z

∂sx
,

∂ν

∂sy
=

f

Z2

∂Z

∂sy
,

∂ν

∂t
=

f

Z2

∂Z

∂t
.

(B.18)
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