001     759
005     20180208232005.0
024 7 _ |2 pmid
|a pmid:18636781
024 7 _ |2 DOI
|a 10.1021/nl0800671
024 7 _ |2 WOS
|a WOS:000258440700005
037 _ _ |a PreJuSER-759
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Thiess, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB78175
245 _ _ |a Theory and Application of Chain Formation in Break Junctions
260 _ _ |a Washington, DC
|b ACS Publ.
|c 2008
300 _ _ |a 2144 - 2149
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nano Letters
|x 1530-6984
|0 13841
|v 8
500 _ _ |a Financial support of the Stifterverband fur die Deutsche Wissenschaft and the Interdisciplinary Nanoscience Center Hamburg are gratefully acknowledged. We would like to thank Paolo Ferriani for many fruitful suggestions at the final stage of this paper and Ruben Weht for stimulating discussions.
520 _ _ |a We introduce a generic model of chain formation in break junctions by formulating criteria for the stability and producibility of suspended monatomic chains based on total energy arguments. Using ab initio calculations including spin-polarization and spin-orbit coupling, we apply our model to the formation of monatomic 4d and 5d transition metal (TM) chains. We explain the physical origin of the experimentally observed general trend of increasing probability for the creation of long chains for late 5d TMs and suppressed chain formation for 4d TMs. We also clarify why the probability of chain elongation can be greatly enhanced by the presence of adsorbates in experiments.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Mokrousov, Y.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Blügel, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)130548
700 1 _ |a Heinze, S.
|b 3
|0 P:(DE-HGF)0
773 _ _ |a 10.1021/nl0800671
|g Vol. 8, p. 2144 - 2149
|p 2144 - 2149
|q 8<2144 - 2149
|0 PERI:(DE-600)2048866-X
|t Nano letters
|v 8
|y 2008
|x 1530-6984
856 7 _ |u http://dx.doi.org/10.1021/nl0800671
909 C O |o oai:juser.fz-juelich.de:759
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)101416
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21