001     763
005     20200402205414.0
024 7 _ |2 pmid
|a pmid:18708462
024 7 _ |2 pmc
|a pmc:PMC2586580
024 7 _ |2 DOI
|a 10.1529/biophysj.108.138040
024 7 _ |2 WOS
|a WOS:000260999500043
037 _ _ |a PreJuSER-763
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
100 1 _ |0 P:(DE-Juel1)VDB78506
|a Stadler, A.M.
|b 0
|u FZJ
245 _ _ |a Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature
260 _ _ |a New York, NY
|b Rockefeller Univ. Press
|c 2008
300 _ _ |a 5449 - 5461
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 882
|a Biophysical Journal
|v 95
|x 0006-3495
|y 11
500 _ _ |a This research project was supported by the European Commission under the 6th Framework Programme through Key Action: Strengthening the European Research Area, Research Infrastructures, contract No. RII3-CT-2003505925.
520 _ _ |a A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|a Funktion und Dysfunktion des Nervensystems
|c P33
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Body Temperature
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Elasticity
650 _ 2 |2 MeSH
|a Erythrocytes: metabolism
650 _ 2 |2 MeSH
|a Hemoglobins: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Neutron Diffraction
650 _ 2 |2 MeSH
|a Protein Denaturation
650 _ 7 |0 0
|2 NLM Chemicals
|a Hemoglobins
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Digel, I.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Artmann, G.M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Embs, J.P.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Zaccai, G.
|b 4
700 1 _ |0 P:(DE-Juel1)131957
|a Büldt, G.
|b 5
|u FZJ
773 _ _ |0 PERI:(DE-600)1477214-0
|a 10.1529/biophysj.108.138040
|g Vol. 95, p. 5449 - 5461
|p 5449 - 5461
|q 95<5449 - 5461
|t Biophysical journal
|v 95
|x 0006-3495
|y 2008
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586580
909 C O |o oai:juser.fz-juelich.de:763
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK409
|a DE-HGF
|b Gesundheit
|k P33
|l Funktion und Dysfunktion des Nervensystems
|v Funktion und Dysfunktion des Nervensystems
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB805
|d 31.12.2008
|g INB
|k INB-2
|l Molekulare Biophysik
|x 0
970 _ _ |a VDB:(DE-Juel1)101420
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21