001     7645
005     20180208221851.0
024 7 _ |2 DOI
|a 10.1002/fuce.200800139
024 7 _ |2 WOS
|a WOS:000269279500019
037 _ _ |a PreJuSER-7645
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Electrochemistry
084 _ _ |2 WoS
|a Energy & Fuels
100 1 _ |a Lustfeld, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)130810
245 _ _ |a Magnetotomography and electric currents in a fuel cell
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2009
300 _ _ |a 474 - 481
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Fuel Cells
|x 1615-6846
|0 6764
|y 4
|v 9
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Magnetotomography, applied to fuel cells, gives rise to several questions: first, how well can the electric current density in the fuel cell be reconstructed by measuring its external magnetic field? It is quite clear that the connection between magnetic field and current alone will lead to ambiguous results. Two further relations lead to unique reconstruction: the continuity equation and Ohm's law. Second, application of Ohm's law in the membrane electrode assembly (MEA) of a fuel cell - is it not a questionable procedure? We show that in the MEA Ohm's law is not needed, when applying a rather mild approximation, we call it the 'thin MEA approximation'. The advantage of this is the linear relation between magnetic field and electric current density, not only in the neighbourhood of the operating point but over the whole range. Third, can a functional connection be derived between resolution of the current density and the precision requirements of the measurement devices? We present a procedure leading to a unique relation between the two. This procedure can be extended to finding the optimum measuring positions, thus essentially decreasing the number of measuring points, and thus the time scale of measurable dynamical disturbances, all this without a loss of fine resolution. We present explicit numerical results for two geometries, typical for DMFC and PEMFC fuel cells.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
536 _ _ |a Scientific Computing
|c P41
|0 G:(DE-Juel1)FUEK411
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Current Density Distribution
653 2 0 |2 Author
|a DMFC
653 2 0 |2 Author
|a Fuel Cell
653 2 0 |2 Author
|a Magnetic Field Measurement
653 2 0 |2 Author
|a MEA
653 2 0 |2 Author
|a PEFC
653 2 0 |2 Author
|a PEMFC
653 2 0 |2 Author
|a Tomography
700 1 _ |a Reißel, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Steffen, B.
|b 2
|u FZJ
|0 P:(DE-Juel1)132269
773 _ _ |a 10.1002/fuce.200800139
|g Vol. 9, p. 474 - 481
|p 474 - 481
|q 9<474 - 481
|0 PERI:(DE-600)2054621-X
|t Fuel cells
|v 9
|y 2009
|x 1615-6846
856 7 _ |u http://dx.doi.org/10.1002/fuce.200800139
909 C O |o oai:juser.fz-juelich.de:7645
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 1
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 1
970 _ _ |a VDB:(DE-Juel1)116326
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21