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The effect of doping in the two-dimensional Hubbard model is studied within finite-temperature exact

diagonalization combined with cluster dynamical mean-field theory. By employing a mixed basis involving

cluster sites and bath molecular orbitals for the projection of the lattice Green’s function onto 2�2 clusters, a

considerably more accurate description of the low-frequency properties of the self-energy is achieved than in

a pure site picture. To evaluate the phase diagram, the transition from Fermi-liquid to non-Fermi-liquid behav-

ior for decreasing hole doping is studied as a function of Coulomb energy, next-nearest-neighbor hopping, and

temperature. The self-energy component �X associated with X= �� ,0� is shown to develop a collective mode

above EF, whose energy and strength exhibits a distinct dispersion with doping. This low-energy excitation

gives rise to non-Fermi-liquid behavior as the hole doping decreases below a critical value �c, and to an

increasing particle-hole asymmetry, in agreement with recent photoemission data. This behavior is consistent

with the removal of spectral weight from electron states above EF and the opening of a pseudogap, which

increases with decreasing doping. The phase diagram reveals that �c�0.15. . .0.20 for various system param-

eters. For electron doping, the collective mode of �X��� and the concomitant pseudogap are located below the

Fermi energy, which is consistent with the removal of spectral weight from the hole states just below EF. The

critical doping, which marks the onset of non-Fermi-liquid behavior, is systematically smaller than for hole

doping.

DOI: 10.1103/PhysRevB.80.165126 PACS number�s�: 71.20.Be

I. INTRODUCTION

The nature of the metal-insulator transition as a function

of doping is one of the key issues in strongly correlated

materials.1 Experimental studies of many high-Tc cuprates

reveal a rich phase diagram, with conventional Fermi-liquid

behavior in overdoped metals and an anomalous pseudogap

phase in underdoped systems close to the Mott insulator. One

of the most intriguing and challenging aspects of the non-

Fermi-liquid phase is the observation of highly nonisotropic

behavior in momentum space.2 Whereas along the nodal di-

rection �M well-defined quasiparticles exist, in the vicinity

of X= �� ,0� strong deviations from Fermi-liquid behavior

occur. In particular, below a critical doping a pseudogap ap-

pears, which becomes more prominent close to the Mott in-

sulator. This transition from Fermi-liquid to non-Fermi-

liquid properties has been widely investigated in recent

years, and several theoretical models have been proposed.3–16

Dynamical mean-field theory17–22 �DMFT� provides an el-

egant and successful framework for the description of the

correlation-induced transition from metallic to Mott insulat-

ing behavior.23 The local or single-site version of DMFT,

however, focuses exclusively on dynamical correlations,

which can give rise to spectral weight transfer between low

and high frequencies. To address the momentum dependence

of the self-energy, it is important to allow for spatial fluctua-

tions, at least on a short-range atomic scale. For this purpose,

several approaches based on cluster extensions of DMFT

�Refs. 24–27� as well as cluster perturbation theory28 have

been proposed. The general consensus that has emerged from

many studies in this field29–66 is that scattering processes are

indeed much stronger close to �� ,0� and �0,�� than in other
regions of the Brillouin zone �BZ�. Thus, Fermi-liquid be-
havior first breaks down in the antinodal direction and a
pseudogap in the density of states �DOS� opens up. In the
nodal direction between �0,0� and �� ,�� Fermi-liquid behav-
ior persists and well-defined quasiparticles can be identified.

In the present work we use exact diagonalization67 �ED�
in combination with cellular DMFT �Ref. 26� �CDMFT� to
investigate the two-dimensional �2D� Hubbard model on a
square lattice for 2�2 clusters. For computational reasons,

ED has previously been applied to study this model at

T=0.41,45,46,50,63 Here, we employ an extension to finite tem-

peratures by making use of the Arnoldi algorithm,68 which

provides a highly efficient evaluation of excited states. In

view of the approximate nature of quantum impurity solvers,

a scheme that complements existing alternative approaches

at finite T is clearly desirable. An important advantage of ED

is the accessibility of large Coulomb energies and low tem-

peratures, and the absence of sign problems. Moreover, the

cluster ED/DMFT is formulated here in terms of a mixed

basis involving cluster sites and bath molecular orbitals,

thereby allowing a very accurate projection of the lattice

Green’s function onto the 2�2 cluster. Thus, despite the use

of only two bath levels per cluster orbital �12 levels in total�,
due to the indirect Coulomb coupling between baths, the

spacing between excitation energies is very small so that

finite-size errors are greatly reduced even at low tempera-

tures. As a result of these refinements, extrapolation from the

Matsubara axis yields highly reliable self-energies and

Green’s functions at low real frequencies. Preliminary calcu-

lations based on this approach were published in Ref. 69.
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Also, this scheme has recently been used to evaluate the
phase diagram of the partially frustrated Hubbard model for
triangular lattices.70

The purpose of this paper is twofold: first, to demonstrate
the accuracy of our approach and to illustrate the consistency
with previous work, a variety of results are given in detail, in
particular, for the cluster self-energy. The excellent overall
agreement with results obtained via alternative cluster meth-
ods serves to establish finite-temperature cluster ED/DMFT
as a versatile and efficient complementary scheme. Second,
several aspects of the 2D Hubbard model are studied system-
atically in order to evaluate the phase diagram for hole and
electron doping. The focus here is on the transition from
Fermi-liquid to non-Fermi-liquid behavior. In particular, we
investigate how the nature of this transition varies as a func-
tion of Coulomb energy, next-nearest-neighbor �NNN� hop-
ping, and temperature. A systematic study of this dependence
has, to our knowledge, not been carried out before. In

addition, we discuss a variety of other aspects such as the

comparison between CDMFT and the dynamical cluster

approximation27 �DCA�, the difference between electron and

hole doping, the doping variation of the pseudogap and of

the weight of induced in-gap states, the approximate momen-

tum variation of the pseudogap, and the particle-hole asym-

metry of the spectral function, which has recently been ob-

served in angle-resolved photoemission �ARPES� data for

Bi2Sr2CaCu2O8+� by Yang et al.71

The key quantity, which exhibits the change from Fermi-

liquid to non-Fermi-liquid behavior most clearly, is the self-

energy component �X associated with X= �� ,0�. For hole

doping ��15. . .20%, we show that spatial fluctuations

within the cluster give rise to a low-energy collective mode

in Im �X���, whose energy and strength exhibit a character-

istic variation with doping. The real part of �X��� then ex-

hibits a positive slope above EF, implying the removal of

spectral weight from electron states and the opening of a

pseudogap in the density of states. A resonance in Im �X���
at �=0.05 had also been found by Jarrell et al.30 in DCA

quantum Monte Carlo �QMC� calculations, and by Kyung et

al.46 in ED/CDMFT calculations at T=0. Here we show that

the evolution of this correlation-induced collective mode

with decreasing doping leads to the widening of the

pseudogap until it merges with the Mott gap at half-filling.

As a result, the density of states in this region acquires a very

asymmetric shape. At large doping the Fermi level is located

at a peak in the density of states, and quasiparticle broaden-

ing varies quadratically near EF. For decreasing doping the

pseudogap shifts downward, giving rise to a marked particle-

hole asymmetry in the spectral distributions A�k ,�� due to

enhanced quasiparticle damping predominantly above EF.

Moreover, with decreasing doping the pseudogap appears

first along the antinodal direction before it opens across the

entire Fermi surface. The phase diagram shows that the

change from Fermi-liquid to non-Fermi-liquid behavior is

remarkably stable, �c�0.15. . .0.20, when system parameters

such as Coulomb energy, temperature, or second-neighbor

hopping are varied.

For electron doping, the low-energy collective mode is

located below the Fermi energy, as expected for the removal

of hole states just below EF. The doping, which defines the

onset of non-Fermi-liquid behavior, is systematically smaller

than for hole doping. Finally, the Mott transition induced by

electron doping exhibits hysteresis behavior consistent with a

first-order transition. In the case of hole doping, hysteresis

behavior could not be identified at the temperatures consid-

ered in this paper. Thus, within the accuracy of our ED/

CDMFT approach, this transition is either weakly first order

at very low temperatures or continuous.

The outline of this paper is as follows. Section II presents

the main theoretical aspects of our finite-T cluster ED/DMFT

approach. Section III provides the results for 2�2 clusters.

In particular, we discuss the Mott transition, the non-Fermi-

liquid properties, the comparison between CDMFT and

DCA, the pseudogap, the doping variation of the low-energy

collective mode, electron doping, the phase diagram, the mo-

mentum dependence, the comparison with the dual Fermion

method, and the interpretation of recent ARPES measure-

ments. A summary is presented in Sec. IV.

II. CLUSTER ED/DMFT IN MIXED SITE/ORBITAL BASIS

In this section we outline the finite-temperature ED

method in the mixed site/molecular-orbital basis, which is

employed as highly efficient and accurate impurity solver in

the cluster DMFT. Let us consider the single-band Hubbard

model for a two-dimensional square lattice

H = − �
�ij��

tij�ci�
+

c j� + H.c.� + U�
i

ni↑ni↓, �1�

where the sum in the first term extends up to second neigh-

bors. The band dispersion is given by 	�k�=−2t�cos�kx�
+cos�ky��−4t� cos�kx�cos�ky�. In order to approximately rep-

resent hole-doped cuprate systems, the nearest-neighbor hop-

ping integral is defined as t=0.25 �bandwidth W=2�. The

next-nearest-neighbor integral is mainly defined as t�=

−0.3t=−0.075, but t�=0 will also be considered. The local

Coulomb interaction is taken to be U=10t=2.5 and U=6t

=1.5. Thus, at half-filling, the system is a Mott insulator.

�For t�=0, QMC/DMFT calculations for four-site clusters55

yield Uc�1.4. . .1.5, in agreement with ED/DMFT results

for two-site and four-site clusters.69 These values are consis-

tent with recent QMC/DCA calculations for eight-site

clusters66 which give Uc�1.4. . .1.6.�
Within CDMFT �Ref. 26� the interacting lattice Green’s

function in the cluster site basis is given by

Gij�i�n� = �
k

�i�n + 
 − t�k� − ��i�n��ij
−1, �2�

where the k sum extends over the reduced Brillouin Zone,

�n= �2n+1��T are Matsubara frequencies, and 
 is the

chemical potential. t�k� denotes the hopping matrix for the

superlattice and �ij�i�n� represents the cluster self-energy

matrix. The lattice constant is taken to be a=1 and site labels

refer to 1	�0,0�, 2	�1,0�, 3	�0,1�, and 4	�1,1�. In this

geometry, all diagonal elements of the symmetric matrix Gij

are identical and there are only two independent off-diagonal

elements: G12=G13=G24=G34 and G14=G23. By definition,

both the lattice Green’s function Gij and self-energy �ij have
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continuous spectral distributions at real �. Only the para-

magnetic phase will be considered here.

It is useful to transform the site basis into a molecular-

orbital basis in which the Green’s function and self-energy

become diagonal. The orbitals are defined as: �1= �
1�+ 
2�
+ 
3�+ 
4�� /2, �2= �
1�− 
2�− 
3�+ 
4�� /2, �3= �
1�+ 
2�− 
3�
− 
4�� /2, and �4= �
1�− 
2�+ 
3�− 
4�� /2. We refer to these or-

bitals as �, M, and X, respectively, where X is doubly degen-

erate. The Green’s function elements in this basis will be

denoted as Gm�i�n�, where

G� 	 G1 = G11 + 2G12 + G14,

GM 	 G2 = G11 − 2G12 + G14,

GX 	 G3 = G4 = G11 − G14. �3�

An analogous notation is used for the self-energy. Similar

diagonal representations of G and � have been used in sev-

eral previous works.30,41,54,55,59,60,69,72

Figure 1 illustrates the uncorrelated density of states com-

ponents in the molecular-orbital basis, where �m���=

−
1

� Im Gm��� for �=0, and we denote ��=�1, �M =�2, and

�X=�3,4. The average or local density is �av
= ���+�M

+2�X� /4. Note that all molecular-orbital densities extend

across the entire bandwidth. Nevertheless, only �X contains

the van Hove singularity, while �� and �M are roughly rep-

resentative of the spectral weight near k= �0,0� and k

= �� ,��, respectively. Hole doping shifts the van Hove sin-

gularity toward EF, whereas electron doping moves this sin-

gularity away from EF.

A central feature of DMFT is that, to avoid double count-

ing of Coulomb interactions in the quantum impurity calcu-

lation, the self-energy must be removed from the small clus-

ter in which correlations are treated explicitly. This removal

yields the Green’s function

G0�i�n� = �G�i�n�−1 + ��i�n��−1, �4�

which is also diagonal in the molecular-orbital basis.

For the purpose of performing the ED calculation we now

project the diagonal components of G0�i�n� onto those of a

larger cluster consisting of nc=4 impurity levels and nb=8

bath levels. The total number of levels is ns=nc+nb=12.
Thus,

G0,m�i�n� � G0,m
cl �i�n� = �i�n + 
 − 	m − �

k=5

12

Vmk


2

i�n − 	k

�−1

,

�5�

where 	m denote the molecular-orbital levels, 	k denote the
bath levels, and Vmk denote the hybridization matrix ele-
ments. The incorporation of the impurity level 	m ensures a
much better fit of G0,m�i�n� than by projecting only onto bath
orbitals.

Assuming independent baths for the cluster orbitals, each
component G0,m�i�n� is fitted using five parameters: one im-
purity level 	m, two bath levels 	k, and two hopping integrals
Vmk. For instance, orbital 1 couples to bath levels 5 and 9,
orbital 2 couples to bath levels 6 and 10, etc. For the three
independent cluster Green’s functions, we, therefore, use a
total of 15 fit parameters to represent G0�i�n�. This proce-
dure provides a considerably more flexible projection than

within a pure site basis. Since for symmetry reasons all sites

are equivalent, one would have in this case only four param-

eters �without including a level at the cluster sites�. Thus, the

molecular-orbital basis allows for 11 additional cross hybrid-

ization terms as well as internal cluster couplings �see be-

low�. In addition, it is much more reliable to fit the three

independent molecular-orbital components G0,m�i�n� than a

nondiagonal site matrix G0,ij�i�n� with only four parameters.

Figure 2 illustrates the projection of the lattice Green’s

function G0�i�n� onto the cluster for U=2.5 and 
=0.5,

which corresponds to about �=0.08 hole doping. Projections

of similar quality are achieved at other Coulomb energies

and chemical potentials.

The evaluation of the finite-temperature interacting cluster

Green’s function could in principle also be carried out in the

molecular-orbital basis. The Coulomb interaction then be-

comes a matrix containing many interorbital components.

This step can be circumvented by using a mixed basis con-

sisting of cluster sites i and bath molecular orbitals k. Thus,

the diagonal 8�8 subblock hb= �	k�kk�
� representing the

bath levels remains unchanged, but the diagonal 4�4 cluster

molecular-orbital submatrix now becomes nondiagonal in the

cluster site basis. The transformation between sites i and or-

bitals m is given by

Tim = 0.5

1 1 1 1

1 − 1 − 1 1

1 − 1 1 − 1

1 1 − 1 − 1
� . �6�

In this mixed basis, the site subblock of the cluster Hamil-

tonian becomes

hc =

	 
 
 
�


 	 
� 



 
� 	 



� 
 
 	
� �7�

with 	= �	1+	2+2	3� /4, 
= �	1+	2−2	3� /4, and 
�= �	1

−	2� /2. Note that the hopping elements t and t� of the origi-
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FIG. 1. �Color online� Total DOS ���� and molecular-orbital

components �m��� for four-site clusters of square lattice. For clar-

ity, the molecular-orbital components are divided by nc=4. �=0

defines the Fermi energy for half-filling. At 14% hole doping the

van Hove singularity is shifted from �=−0.13 to −0.09.
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nal lattice Hamiltonian do not appear since they are effec-

tively absorbed into 
 and 
� via the molecular-orbital cluster

levels 	m, which are adjusted to fit G0,m�i�n�. Evidently, the

procedure outlined above not only includes hopping between

cluster and bath but also introduces three new parameters

within the 2�2 cluster: 	, 
, and 
�. In the mixed basis, the

hybridization matrix elements Vmk between cluster and bath

molecular orbitals introduced in Eq. �5� are transformed to

new hybridization matrix elements between cluster sites i

and bath orbitals k. They are given by

Vik� = �TV�ik = �
m

TimVmk. �8�

Thus, the upper right 4�8 submatrix containing the cluster/

bath hybridization matrix elements is transformed from



V5 0 0 0 V9 0 0 0

0 V6 0 0 0 V10 0 0

0 0 V7 0 0 0 V11 0

0 0 0 V8 0 0 0 V12

� �9�

to



V5 V6 V7 V8 V9 V10 V11 V12

V5 − V6 − V7 V8 V9 − V10 − V11 V12

V5 − V6 V7 − V8 V9 − V10 V11 − V12

V5 V6 − V7 − V8 V9 V10 − V11 − V12

� .

�10�

The single-particle part of the cluster Hamiltonian then reads

h0 = � hc V�

V�
t hb

� . �11�

Adding the onsite Coulomb interactions to this Hamiltonian,

the nondiagonal interacting cluster Green’s function at finite

T can be derived from the expression73,74

Gij
cl�i�n� =

1

Z
�
�


e−�E�� ��
ci�

��

c j�
+ 
��

E� − E
 + i�n

+
��
ci�

+ 

��

c j�
��

E
 − E� + i�n

� , �12�

where E� and 
�� denote the eigenvalues and eigenvectors of

the Hamiltonian, �=1 /T and Z=��exp�−�E�� is the parti-

tion function. At low temperatures only a small number of

excited states in a few spin sectors contributes to Gij
cl. They

can be efficiently evaluated using the Arnoldi algorithm.68

The excited-state Green’s functions are computed using the

Lanczos procedure. Further details are provided in Ref. 73.

The nondiagonal elements of Gij
cl are derived by first evalu-

ating the diagonal components Gii
cl and then using the rela-

tion

G�i+j��i+j�
cl = Gii

cl + Gij
cl + G ji

cl + G j j
cl. �13�

Since Gij
cl=G ji

cl, this yields

Gij
cl =

1

2
�G�i+j��i+j�

cl − Gii
cl − G j j

cl� . �14�

The interacting cluster Green’s function Gij
cl satisfies the

same symmetry properties as Gij and G0,ij. It may, therefore,

also be diagonalized, yielding cluster molecular-orbital com-

ponents Gm
cl. The cluster molecular-orbital self-energies can

then be defined by an expression analogous to Eq. �4�

�m
cl�i�n� = 1/G0,m

cl �i�n� − 1/Gm
cl�i�n� . �15�

At real �, these cluster self-energy components, just like

G0,m
cl and Gm

cl, have discrete spectral distributions.

The key assumption in DMFT is now that the impurity

cluster self-energy is a physically reasonable representation

of the lattice self-energy. Thus,

�m�i�n� � �m
cl�i�n� , �16�

where, at real frequencies, �m is continuous.

In the next iteration step, these diagonal self-energy com-

ponents are used as input in the lattice Green’s function �Eq.

�2��, which in the molecular-orbital basis is given by

-4

-2

0

0 0.5 1 1.5

Im
G

0
,m

(i
ω

n
)

ωn

U = 2.5 µ = 0.5

M

X

Γ

-1

0

1

2

0 0.5 1 1.5

R
e

G
0

,m
(i

ω
n
)

ωn

U = 2.5 µ = 0.5

M

X

Γ

(b)(a)

FIG. 2. �Color online� Projection of lattice Green’s function components G0,m�i�n� onto cluster consisting of four impurity levels and

eight bath levels, for U=2.5, 
=0.5, and T=0.01. �a� Im G0,m, �b� Re G0,m. Continuous curves: diagonal elements of lattice Green’s function,

Eq. �4�; circles: approximate expression, right-hand side of Eq. �5�.
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Gm�i�n� = �
k

�i�n + 
 − Tt�k�T−1 − ��i�n��mm
−1 , �17�

where T is the transformation defined in Eq. �6�. Thus, ex-

cept for the diagonalization, which is carried out in the

mixed site/molecular-orbital basis, all other steps of the cal-

culation procedure are performed in the diagonal orbital ba-

sis. Note that Tt�k�T−1 is not diagonal at general k points. As

a result, all orbital components of ��i�n� contribute to each

Gm�i�n�. This feature of CDMFT differs from DCA where

one has a one-to-one relation between �m�i�n� and Gm�i�n�
�Ref. 27�

Gm
DCA�i�n� = �

km

�i�n + 
 − 	�k� − �m�i�n��−1, �18�

where km labels the mth patch of the Brillouin zone.

The largest spin sector for ns=12 is n↑=n↓=6 with dimen-

sion N=853776. The interacting cluster Hamiltonian matrix

h is extremely sparse, so that only about 20 nonzero matrix

elements per row need to be stored. Thus, storage require-

ments are less than for complete diagonalization for ns=8.

Since the Arnoldi algorithm requires only operations of the

type hu=v, where u ,v are vectors of dimension N, the pro-

cedure outlined above can easily be parallelized. At tempera-

tures on the order of T=0.005. . .0.02, one iteration takes

about 15 to 60 min on eight processors. Except near the Mott

transition, five to 10 iterations are usually required to achieve

self-consistency. An interesting future development would be

the extension to even larger clusters by exploiting massively

parallel tools.

We conclude this section by pointing out that, once itera-

tion to self-consistency has been carried out, an approximate

periodic lattice Green’s function may be constructed from

the cluster components in Eq. �2� by using the

superposition38

G�k,i�n� =
1

4
�
ij=1

4

eik·�Ri−Rj�Gij�i�n�

= G11�i�n� + G12�i�n��cos�kx� + cos�ky��

+ G14�i�n�cos�kx�cos�ky� . �19�

At high-symmetry points, this definition coincides with the

diagonal elements introduced in Eq. �4�. Thus, G��i�n�
=G��0,0� , i�n�, GM�i�n�=G��� ,�� , i�n�, and GX�i�n�
=G��� ,0� , i�n�=G��0,�� , i�n�. At k= �� /2,� /2�, G coin-

cides with the onsite Green’s function G11= �G�+GM

+2GX� /4.

III. RESULTS AND DISCUSSION

A. Mott transition

Figure 3 shows the occupancies of the cluster molecular

orbitals �, M, and X as functions of chemical potential. The

average occupancy per site �both spins� is n= �n�+nM

+2nX� /2=1−�, where � is the hole doping. As revealed by

the spectral distributions discussed below, the Mott transition

occurs at 
�0.7, where the X orbital becomes half-filled,

whereas n� and nM approach 0.25 and 0.75, respectively.

Thus, all three orbitals take part in the transition. This result

is consistent with previous ED/DMFT calculations69 for two-

site and four-site clusters in the limit t�=0, and with recent

QMC results61 for a minimal two-site cluster DCA version,

where hole doping takes place at about the same rate for both

inner and outer regions of the Brillouin zone. These trends

differ, however, from results for an eight-site continuous

time QMC/DCA calculation,66 which reveals initial doping

primarily along the nodal direction, while near X the occu-

pancy for small � remains at the same value as in the Mott

insulator. Evidently, two-site and four-site cluster DMFT ap-

proaches do not provide sufficient momentum resolution to

allow for k-dependent doping.

Figure 3�b� shows the average double occupancy per site.

We have calculated these occupancies both for increasing

and decreasing chemical potential without encountering hys-

teresis behavior for T�0.005. The Mott transition induced

by hole doping is, therefore, weakly first order at even lower

temperatures, or continuous. This result differs from the case

of electron doping discussed farther below, where nm�
� as

well as docc�
� readily show hysteresis.

To illustrate the Mott transition in the limit of half-filling,

we show in Fig. 4 the spectral distributions obtained

from the interacting cluster Green’s function: Am���=

−�1 /��Im Gm
cl��+ i��, where �=0.02. These spectra can be

evaluated without requiring analytic continuation from Mat-
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FIG. 3. �Color online� �a� Occupancies of cluster molecular orbitals �per spin� as functions of chemical potential 
, for U=2.5,

T=0.01. The Mott transition occurs at about 
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subara to real frequencies. The total density of states per spin
is given by A���= �A����+AM���+2AX���� /4. All cluster
molecular orbitals contribute to the spectral weight near the
Fermi level in the metallic phase for ��0, and to the upper

and lower Hubbard bands in the Mott phase at �=0.

The evolution of these spectra as a function of doping

supports the picture conjectured long ago by Eskes et al.75

Upon hole doping, spectral weight is transferred from the

upper and lower Hubbard bands to states just above EF, in

the lower part of the Mott gap. Since the spectral weight �per

spin� of both Hubbard bands initially decreases like �1
−�� /2, the states induced just above EF have weight � �see

also Ref. 16�. This scenario is a remarkable consequence of

strong dynamical correlations and differs fundamentally

from the one in ordinary semiconductors, where states in-

duced in the gap have weight � /2 per spin for total doping �.

Our ED/DMFT cluster calculations are in excellent agree-

ment with this picture, as illustrated in Fig. 5, which shows

the integrated spectral weight per spin induced just above EF.

This weight is denoted here as W+���. The initial slope of W+

is seen to be well represented by �, confirming the scenario

discussed above. At finite doping W+��� becomes even larger

than �+nd, where nd is the double occupancy shown in Fig.

3. These results differ from those for t�=0 and T=0 obtained

by Sakai et al.,63 who found W+�����+nd up to about 14%

hole doping.

Upon closer inspection, the spectral distributions shown

in Fig. 4 at finite doping reveal a pseudogap close to EF,

which will be discussed in more detail in the following sub-

sections. As shown below, this pseudogap is intimately re-

lated to the non-Fermi-liquid properties, which are evident in

the X component of the self-energy.

B. Non-Fermi-liquid properties

We now discuss the low-frequency variation of the cluster

self-energy, which is strikingly different for the different

cluster molecular orbitals. Figure 6 shows the imaginary

parts of �m�i�n�, Eq. �16�, for chemical potentials 
 in the

range from 1% to 24% hole doping. The � orbital, approxi-

mately representative of the center of the Brillouin zone,

exhibits the weakest self-energy. It is nearly independent of

doping and Fermi-liquid-type, with only a moderate

effective-mass enhancement. �M changes from Fermi-liquid

behavior at large doping to insulating behavior �1 / i�n close

to the Mott transition. At small finite doping, it reveals strong
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pancy shown in Fig. 3.

ANSGAR LIEBSCH AND NING-HUA TONG PHYSICAL REVIEW B 80, 165126 �2009�

165126-6



effective-mass enhancement. Both Im �� and Im �M ex-

trapolate to very small finite values in the limit �n→0, ex-

cept near the Mott transition. In striking contrast to these

orbitals, Im �X�i�n� exhibits a finite onset in the low-

frequency limit once the doping is smaller than about 20%

�see expanded scale in Fig. 7�. The onset is largest at about


=0.55, corresponding to �=5%. At smaller doping �larger


�, i.e., very close to the Mott transition, it diminishes again.

In addition to the low-frequency onset of Im �X�i�n�,
which gives rise to reduced quasiparticle lifetime, the non-

Fermi-liquid behavior also leads to a sharp initial rise and

subsequent flattening of Im �X�i�n�, which induces a sharp

resonance in Im �X��� at small positive frequencies. As will

be discussed in the next subsection, it is this resonance that is

responsible for the pseudogap in the density of states.

Similar results are obtained at lower temperature, T

=0.005, as shown in Fig. 7�b�. Again, the largest deviation

from Fermi-liquid behavior is found for Im �X�i�n� at about

6% doping. The onset of non-Fermi-liquid properties occurs

at slightly smaller doping than for T=0.01. The results

shown in Figs. 6 and 7 are consistent with the T=0 ED/

CDMFT calculations by Civelli et al.41

To illustrate the non-Fermi-liquid behavior of �X in more

detail, we compare in Fig. 8�a� the low-frequency limits �m

	−Im �m�i�n→0� as functions of chemical potential. These

values were found to be nearly the same for a linear extrapo-

lation from the first two Matsubara points and for a quadratic

fit using the first three points. At 
�0.3 or ��0.18, �X

increases strongly, indicating the onset of a non-Fermi-liquid

phase. Figure 8�b� shows the variation of �X with doping for
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T=0.01 and T=0.005. At lower T, the onset of non-Fermi-

liquid behavior is seen to be slightly sharper and to shift to

slightly lower �.

At finite temperature, a sharp transition between Fermi-

liquid and non-Fermi-liquid phases is not to be expected.

According to the detailed temperature variation in the self-

energy of the two-dimensional Hubbard model studied re-

cently by Vidhyadhiraja et al.64 within QMC/DCA for 4

�4 clusters �U=1.5, t�=0�, a quantum critical point exhib-

iting marginal Fermi-liquid behavior was found at �c�15%

doping, with Fermi-liquid behavior at larger � and a

pseudogap phase at ���c. At T=0.01, the T /� phase dia-

gram indicates a crossover region of about �=0.15�0.02

between these phases. Assuming a crossover region of simi-

lar width, i.e., ���0.04, the results shown in Fig. 8 are

consistent with those of Ref. 64. Thus, for U=2.5, the Fermi-

liquid and non-Fermi-liquid phases seem to be separated by a

quantum critical point at �c�18. . .20%, with marginal

Fermi-liquid behavior for T�0.

Figure 9 compares the low-frequency damping rate of the

X orbital as a function of doping for U=2.5 and U=1.5.

Figure 9�a� shows the results for t�=−0.075, Fig. 9�b� for

t�=0. The case U=1.5, t�=0 suggests a critical doping �c

�0.15�0.02, in agreement with the results of Ref. 64. As is

to be expected, at smaller U �c is smaller than at large U,

since the Fermi liquid properties are stabilized. A similar

trend occurs as t� is shifted from t�=−0.075 to t�=0. Never-

theless, despite the large variations in U and t�, the critical

doping separating the Fermi-liquid and non-Fermi-liquid

phases is remarkably stable and occurs in the range of �c

�0.15. . .0.20, i.e., close to the optimal doping concentra-

tions found in many high-Tc cuprates.

We point out here that close to the Mott transition the

low-frequency damping rate �X decreases at large U but in-

creases at small U �see Fig. 9�. Since we are here primarily

concerned with the Fermi-liquid to non-Fermi-liquid transi-

tion, we do not discuss the limit �→0 in more detail. We

only recall that in CDMFT all self-energy components are

coupled, as indicated in Eq. �17�. Thus, all molecular orbitals

of the 2�2 cluster are involved in the metal-insulator tran-

sition, as shown in Figs. 3 and 4. The damping rate �X,

therefore, cannot be used as the sole criterion of the Mott

transition.

C. Comparison between CDMFT and DCA

To analyze the difference between CDMFT and DCA for

2�2 clusters, with identical system parameters, we compare

in Fig. 10 the low-frequency damping rate of �X�i�n� as a

function of doping. Evidently, the different relations between

self-energy components �m and lattice Green’s function Gm

in these two schemes give rise to changes on a quantitative

level. Nevertheless, both approaches predict a transition from

a Fermi-liquid phase at hole doping larger than about 20% to
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a non-Fermi-liquid phase at small doping. Surprisingly, the

transition is less sharp in DCA than in CDMFT. The reason

for this difference might be that, in contrast to CDMFT, the

momentum patches of the Brillouin zone are not coupled in

the evaluation of the DCA lattice Green’s function �see Eq.

�18��. It might, therefore, be necessary in DCA to treat larger

clusters �such as eight sites66 or 16 sites64� in order to obtain

a sharper Fermi-liquid to non-Fermi-liquid transition. A

slower convergence with cluster size in DCA is also found

for the critical Coulomb energy at half-filling.59,66

For a more detailed comparison with the results of Ref.

64, we show in Fig. 11 the variation in Im �X�i�n� with

chemical potential for U=1.5, t�=0, and T=0.01. These val-

ues of 
 correspond to dopings in the range of �
=0.27. . .0.05. Although the overall magnitude of Im �X is

much smaller than in Fig. 7 for U=2.5, t�=−0.075, there is

again a clear separation between doping larger than �c

�0.17 exhibiting Fermi-liquid behavior, and smaller doping

with characteristic non-Fermi-liquid features. Figure 11�b�
shows the comparison of the approximate quasiparticle

weight, ZX=1 / �1−Im �X�i�0� /�0�, derived from the ED/

DMFT results in Fig. 11�a�, with the corresponding QMC/

DCA values taken from Fig. 1 of Ref. 64. For ��0.15 the

agreement is very good. �Note that for ZX�0.5, −Im �X�i�0�
is less than �0=0.031.� At smaller doping, the difference

becomes larger, presumably because of the finer momentum

resolution achieved for the 4�4 cluster in Ref. 64.

D. Pseudogap

The non-Fermi-liquid properties of �X�i�0� manifest

themselves not only in the enhanced low-frequency damping

rate discussed above but also in the sharp initial rise and

subsequent flattening of Im �X�i�n�, which can be identified

as the origin of the pseudogap in the density of states. Nar-

row gaps near EF below the critical doping are already evi-

dent in the cluster spectra shown in Fig. 4. Figure 12 shows

these spectra on an expanded scale for �=�c�0.18 and �
=0.03. While near critical doping the density of states is

Fermi-liquid-type, with a sharp peak at EF, smaller hole dop-

ing leads to a very asymmetric density of states, with a

pseudogap of magnitude ��4t2
/U=0.1 right above EF. The

molecular-orbital analysis of these spectra reveals that this

pseudogap is associated entirely with the AX��� contribution,

i.e., with the scattering processes involving momenta close to

�� ,0� and �0,��. With decreasing doping, the peak at EF

seen for ���c shifts downward, so that the Fermi level

gradually moves into the pseudogap. At the same time, the

pseudogap becomes wider and the spectral weight above EF

is reduced until the transition to the Mott phase occurs at

half-filling. �The peak at ��0.25 for �=0.18 is due to the

discreteness of the cluster spectra and is not related to the

pseudogap. The actual pseudogap at this large doping is van-

ishingly small; see analysis of self-energy below.�
Note that the peak at EF for �=�c is also compatible with

marginal Fermi-liquid behavior. Finite-size effects, however,

do not permit a clear distinction between Fermi-liquid prop-

erties below the first Matsubara frequency �0 and genuine

marginal Fermi-liquid behavior at �c.
64

Figure 12�b� shows the corresponding spectra derived

from the lattice Green’s function components Gm�i�n�, Eq.

�17�, via extrapolation to real �. Thus, A���=−
1

� Im�G����
+GM���+2GX���� /4. We use here the routine ratint.76

Nearly identical spectra are obtained via Padé extrapolation.

About 400…600 Matsubara points are taken into account for

the energy window −1���1, and the same broadening is

assumed ��=0.02� as in the cluster spectra shown in Fig.

12�a�. As a result of the accurate self-energies and Green’s

functions along the Matsubara axis, the extrapolation to low

real � is highly reliable. The lattice spectra confirm the trend

observed in the cluster spectra: at 
=0.3, �=0.18, the den-
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sity of states has a peak very close to the Fermi level, while

for 
=0.6, �=0.03, EF lies in a pseudogap of about the same

width as in the cluster data. The lattice spectra A��� can also

be calculated by first extrapolating the self-energy compo-

nents �m�i�n� to real frequencies and then using Eq. �17� at

real �. The results are fully consistent with the spectra de-

rived via extrapolation of Gm�i�n�.
The pseudogap seen in Fig. 12 for �=0.03 is reminiscent

of the pseudogap obtained in the two-band model within

local DMFT above the first Mott transition.77 Once the elec-

trons in the narrow subband are Mott localized, an effective

two-fluid system is realized in which the Coulomb interac-

tion with the remaining conduction electrons generates de-

viations from Fermi-liquid behavior, in particular, the finite

lifetime associated with the low-frequency limit of

Im ��i�n�, and the characteristic flattening of this function,

which gives rise to a pseudogap at real �.78 This two-band

model exhibits a quantum critical point when the pseudogap

turns into the Mott gap.79 It would be interesting to inquire

whether the present cluster picture of the single-band model

could be mapped onto this two-band model. The spatial de-

grees of freedom in the cluster would then play the role of

the interorbital fluctuations in the two-band model. Since at

small hole doping a sizable number of electrons is Mott lo-

calized their spins act as scattering centers for the remaining

electrons, whose self-energy then exhibits deviations from

Fermi-liquid behavior.

E. Low-energy collective mode

To illustrate the effect of non-Fermi-liquid behavior on
the self-energy at real �, we show in Fig. 13 the low-
frequency variation in Im �X��� obtained from Fig. 7�b� via
extrapolation to real �. Typically, at these low frequencies
we use the first 100…400 Matsubara points and evaluate

Im �X at �+ i�, with �=0.005. Although the details of the

resulting spectra differ slightly, the important qualitative fea-

tures near EF are very stable. Spectra derived via Padé ex-

trapolation are very similar.

As can be seen in Fig. 13, at large hole doping −Im �X���
has a minimum at EF and varies quadratically at small �, as

expected for a Fermi liquid. Damping in this range is very

weak. Nevertheless, even for ��0.17 a small peak in

−Im �X��� is found at about �=0.05 above EF, indicating

that electrons added to the system above EF have a reduced

lifetime. With decreasing doping, this feature grows into a

prominent collective mode, which eventually dominates the

low-frequency properties. The minimum of −Im �X��� is

then shifted slightly below EF and a second minimum ap-

pears above EF. Re �X��� is seen to exhibit a positive slope

at the resonance, which is consistent with Kramers-Kronig

relations. This implies that spectral weight is removed from

the resonance region where correlation-induced damping is

large. Note that, at intermediate doping near �=0.14,

Im �X��� is approximately linear in �, with a larger slope

above EF than below.
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Figure 14 shows the energy and weight �peak area� of the
low-energy collective mode as a function of hole doping.
The energy � first shifts downward from ��0.05 to 0.02
and then again upward to about ��0.05 at very low doping.
The amplitude of this peak increases about one order of mag-
nitude as � decreases from 0.15 to 0.03. The evolution of this
mode with doping is one of the main results of this work and
has to our knowledge not been discussed previously. A weak
resonance in Im �X at 5% doping was also found by Jarrell et
al.30 within QMC/DCA for nc=4 �see also Ref. 46�. The fact
that this resonance is much stronger in the present results
might be related to the faster convergence of CDMFT with
cluster size �see the discussion of Fig. 10�, and to the lower
temperature used here. A resonance in Im ���� is also ob-
tained in the spectral weight transfer model proposed by
Phillips et al.16 In this scheme, however, the resonance is
located at �=0 independently of doping.

The outer intersections of Re �X��� with �+
−	k pro-
vide the approximate width of the pseudogap � in the spec-
tral distribution. The central intersection does not yield any
peak because of the short lifetime in this frequency range.
The new minima of −Im �X��� below and above the reso-
nance are consistent with the spectral peaks just below and
above EF, as seen in the results for �=0.03 in Fig. 12. For
increasing hole doping, the resonance of Im �X��� becomes
weaker so that for ��0.17 there are no longer three inter-
sections of �+
−	k with Re �X���. The pseudogap then
vanishes. At smaller doping, the peak in −Im �X��� grows
and the pseudogap gets wider. This trend, however, is super-
ceded by the reduction in spectral weight above EF as the

Mott transition at half-filling is approached.

Figure 14�b� shows the approximate width of the

pseudogap � as a function of doping. We use here the outer

intersections of Re �X��� with the lines �+
−	k to define

the magnitude of �, where 	k is chosen so that �+
−	k

passes through the inflection point in the region of the maxi-

mal positive slope of Re �X���. Other values of 	k yield

similar values of �. In the spectral distributions, this defini-

tion of the pseudogap roughly corresponds to the peak-to-

peak separation of spectral weight near the gap. Systemati-

cally smaller values of � are obtained, for instance, if the

width of the gap, half way between the minimum of A���
and the neighboring maxima, is chosen as definition. At

��0.17, the definition used above no longer yields

a pseudogap and the system turns into an ordinary Fermi

liquid.

It would be very interesting to inquire to what extent the
doping variation of the energy and strength of the collective
mode discussed above is compatible with other theoretical
models.3–16

The doping-dependent resonance in Im �X��� and the
concomitant opening of the pseudogap are consistent with
recent angle-resolved photoemission �ARPES� data by Yang

et al.71 According to Fig. 13�a�, for ��0.17 the quasiparticle

damping close to EF is symmetric for electron and hole

states. Im �X becomes asymmetric only for ��0.02. Below

this doping, the lifetime of electron states above EF is much

shorter than that of hole states below EF, giving rise to the

opening of the pseudogap above EF and the striking particle-

hole asymmetry observed in the data. Moreover, the results

shown in Fig. 13 are specific to the �� ,0� component of the

self-energy and are absent in ����� and �M���. Thus, the

particle-hole asymmetry and pseudogap above EF are

momentum-dependent features, which are most pronounced

in the antinodal region, but weak or absent along the nodal

�M direction. This also agrees with the experimental data.71

A more detailed discussion of the momentum variation in the

self-energy will be given in the final subsection.

Because of the finite temperature in the ED/CDMFT cal-

culation, it is not possible to identify spectral features at

frequencies below the first Matsubara point ��0=0.0314

for T=0.01�. Nevertheless, the doping variation in the

pseudogap shown in Fig. 14 is found to be robust. In particu-

lar, it is clear that the pseudogap is directly linked to the

resonance in −Im �X��� which, in turn, reflects the non-

Fermi-liquid properties of the system. Since for ���c ordi-

nary Fermi-liquid behavior is established, it is evident that

the pseudogap then vanishes.

The above scenario is consistent with the fact that for a

hole-doped Mott insulator the addition of electrons pushes

the system closer to the insulating phase. This implies that

spectral weight just above EF must be removed and shifted

toward the upper and lower Hubbard bands. This is precisely

the effect induced via the large damping associated with the

low-frequency resonance in −Im �X��� and the positive

slope of Re �X���.
According to this picture, the creation of holes in an

electron-doped Mott insulator also moves the system closer

to the insulating phase. Thus, spectral weight from states just

below EF must be shifted to the Hubbard bands. As discussed

in the next subsection, the ED/CDMFT results confirm this
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prediction. The X component of the self-energy along the

Matsubara axis again exhibits non-Fermi-liquid behavior at

sufficiently low electron doping. The extrapolation to real �,

however, now reveals a resonance slightly below EF, rather

than above EF as for hole doping.

F. Electron doping

For completeness we discuss in this subsection the case of

electron doping, which differs from hole doping because of

the second-neighbor hopping term t�. As a result of this in-

teraction, the density of states shown in Fig. 1 is asymmetric,

so that electron doping shifts the van Hove singularity away

from EF rather than toward it. Thus, the density of states is

reduced and less steep. Figure 15 shows the occupancies of

the cluster molecular orbitals in the vicinity of the Mott tran-

sition induced via electron doping. Both these occupancies as

well as the double occupancy shown in Fig. 15�b� exhibit

hysteresis behavior for increasing vs decreasing chemical po-

tential, indicating that this transition is first order. Thus, this

transition is similar to the doping-induced metal-insulator

transitions found within local DMFT for single-band and

multiband systems.80–82

Because of the lower and less steep density of states for

electron doping, the low-frequency variation in the self-

energy differs greatly from the hole doping case, as illus-
trated in Fig. 16. Although there is again a clear distinction
between Fermi-liquid and non-Fermi-liquid behavior, the
transition now occurs at considerably smaller �. While for
hole doping �c�0.18. . .0.20, for electron doping we find
�c�0.12. Thus, the Fermi-liquid phase is stabilized.

To identify the pseudogap for electron doping, we evalu-
ate the cluster self-energy components via extrapolation to
real frequencies. Figure 17�a� shows �X��� at small �. In
this case the non-Fermi-liquid properties give rise to a reso-
nance in −Im �X��� centered slightly below the Fermi level,
indicating that the creation of hole states in an electron-
doped Mott insulator implies a transfer of spectral weight
from states near EF to the Hubbard bands. Thereby the sys-
tem is brought closer to the insulating phase. Accordingly,
the real part of �X��� exhibits a positive slope close to EF.
Its intersections with �+
−	k can be used to define the
pseudogap. For �=0.08 the gap is found to be ��0.03, i.e.,
only about half as large as for the hole doping case shown in
Fig. 13. Figure 17�b� shows the quasiparticle distributions
obtained via extrapolation of the lattice Green’s function
components, Eq. �17�, to real �. The dominant feature at

small � is the pseudogap in the X component, which is con-

sistent with the behavior of ���� displayed in Fig. 17�a�.
The main difference with respect to hole doping, apart

from the smaller size of the pseudogap, is the fact that this
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gap can be identified only in a very narrow doping range. At

electron doping larger than 0.08, the non-Fermi-liquid be-

havior is quickly replaced by ordinary Fermi-liquid proper-

ties. At smaller doping, spectral weight just below EF is rap-

idly transferred to the Hubbard bands, so that the pseudogap

is superceded by the opening on the Mott gap.

G. Phase diagram

In Fig. 9 we have shown that the onset of non-Fermi-

liquid behavior is shifted to smaller hole doping when U

=2.5 is reduced to U=1.5 and when t�=−0.075 is replaced

by t�=0. Figure 16 illustrates the reduction in �c for U=2.5

when hole doping is replaced by electron doping. A similar

reduction is found for U=1.5 �not shown�. In Fig. 18 we

collect these data and display the phase diagram of the

present Hubbard model for electron and hole doping. At fi-

nite temperature the values of �c can only be determined

within an accuracy of about �0.02. For clarity, these margins

are not plotted in Fig. 18. Despite this uncertainty, the results

demonstrate several trends: for hole doping �c diminishes

with decreasing U and when t�=−0.075 is replaced by t�
=0. Moreover, for t�=−0.075 the critical doping decreases

when hole doping is replaced by electron doping. As pointed

out above, the variation in �c is surprisingly small, despite

the rather large changes in U and t�.

H. Momentum variation

According to the results shown in Fig. 6 the non-Fermi-

liquid properties of the two-dimensional Hubbard model at

low hole doping are mainly associated with the X component

of the self-energy. Only very close to the Mott transition the

M component begins to dominate since its imaginary part

changes from ��n to �1 /�n. The cluster components of the

self-energy may be used to construct an approximate

momentum-dependent lattice self-energy by using the same

periodization as in Eq. �19� for the Green’s function. Thus,41

��k,�� = ���k������ + �M�k��M��� + �X�k��X��� ,

�20�

where

���k� = �1 + cos kx��1 + cos ky�/4,

�M�k� = �1 − cos kx��1 − cos ky�/4,

�X�k� = �1 − cos kx cos ky�/2. �21�

The k-resolved spectral distributions are then given by

A�k,�� = −
1

�
Im�� + 
 − 	�k� − ��k,���−1. �22�

An alternative is to periodize instead the cumulant matrix50

M���=1 / ��+
−����� which can be diagonalized in the

same manner as the self-energy. Thus, the molecular-orbital

components of M��� are given by Mm���=1 / ��+

−�m���� and the momentum-dependent lattice cumulant

M�k ,�� can be derived from an expression analogous to

Eq. �20�

M�k,�� = ���k�M���� + �M�k�MM��� + �X�k�MX��� .

�23�

The lattice self-energy in this approximation takes the form
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��k,�� = � + 
 − 1/M�k,�� . �24�

In Fig. 19�a� we compare these two versions of ��k ,�� at

�=0 for �=0.06 hole doping. The real-� components

�m��=0� are obtained via extrapolation from the first few

Matsubara frequencies. At high-symmetry points both ver-

sions of Im ��k ,�=0� coincide. At general k points, how-

ever, the cumulant expression yields enhanced damping, in

particular, between M and X, and along �M. The enhance-

ment near X leads to an effective flattening of Im ��k ,��,
which is also seen in the dual Fermion approach.62 On the

other hand, it is not clear whether this enhancement is partly

an artifact of the cumulant approximation since the damping

at some points between X and M is even larger than at X.
Also, damping near k�2 /3�� ,�� in the cumulant version is
almost as large as at X. At the present doping ��=0.06�, the
periodization of the self-energy according to Eq. �20� is in
better agreement with the dual Fermion approach �see Fig.
15 of Ref. 62�.

Figure 19�b� shows the variation in −Im ���=0,k� along
k=��1−r sin � ,1−r cos ��, where r=0.7,0.8,0.9 is cho-
sen to approximately represent the region of the Fermi sur-

face for electron doping, half-filling, and hole doping, re-

spectively. Both periodization versions yield consistently

larger damping along XM than along the nodal direction �M.

The cumulant version implies overall larger damping and,
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more importantly, less pronounced difference between �M

and XM. Because of the substantial imaginary part of the

self-energy at low frequencies, the Fermi surface in the

present 2�2 cluster approach exhibits arcs rather than hole

pockets.41,63 We emphasize, however, that greater momen-

tum differentiation obtained for larger clusters might lead to

more pronounced anisotropy between the nodal and anti-

nodal directions. In particular, this could yield smaller values

of −Im ���=0,k� along �M ��=45� than indicated in

Fig. 19.

According to the collective mode in Im �X��� �see Fig.

13�, the anisotropy between the �X and �M directions is

even larger above EF than for the �→0 limit shown in Fig.

19. Thus, the collective mode gives rise to a momentum and

doping-dependent particle-hole asymmetry. To illustrate this

point, we show in Fig. 20 the low-frequency part of the

spectral distribution A�k ,��, derived via extrapolation of the

lattice Green’s function, Eq. �19�, at three representative

points in the Brillouin zone. Three doping regions can be

distinguished: at 
=0.3 close to optimal doping ��=0.18,

Fig. 20�a�� there is weak anisotropy since the system is a

Fermi liquid throughout k space. Below critical doping �

=0.4, �=0.12, Fig. 20�b��, the spectrum in the antinodal di-

rection at X shows clear signs of pseudogap behavior, while

the one at k=0.36�� ,��, i.e., near the nodal point of the

Fermi surface for hole hoping, is still dominated by Fermi-

liquid properties. At this k point, the coefficients in

the momentum expansion, Eq. �20�, are ��� ,�M ,�X�
= �0.50,0.09,0.41�, indicating the rather large Fermi-liquid-

type � component. At the zone center these coefficients are

�1/4,1/4,1/2�. Finally, at even lower doping �
=0.6, �=0.03,

Fig. 20�c��, close to the Mott transition, the non-Fermi-liquid

properties have spread across the entire Fermi surface, so

that the pseudogap is observable along the nodal as well as

antinodal directions. These results demonstrate the nonuni-

form, momentum-dependent opening of the pseudogap as a

function of doping. �Note that this behavior differs from the

opening of the Mott gap shown in Fig. 4, which in the

present 2�2 cluster DMFT takes place simultaneously in all

cluster components.�

I. Comparison with ARPES data

To make contact to the particle-hole asymmetry observed

in the recent ARPES data on Bi2Sr2CaCu2O8+� by Yang et

al.71 we have calculated the spectral distributions A�k ,��
defined in Eq. �22�, where the self-energy is obtained from

Eq. �20�. The frequency variation of the X component is

shown in Fig. 13. For direct comparison with the data we

plot A�k ,�� along three cuts, as indicated in Fig. 21. Cut 1

corresponds to the nodal direction and has the lowest relative

weight from �X���, while in cut 3 the X component domi-

nates.

For large doping ��=0.17, Fig. 22�a��, the system is a

Fermi liquid. Thus, the spectral weight at all three cuts is

largest at EF and decays symmetrically for increasing and

decreasing �. Particle-hole asymmetry is then limited to en-

ergies far from EF. Below critical doping ��=0.14, Fig.

22�b��, the particle-hole symmetry initially persists along the

nodal direction, but gets weaker along cut 3. At �=0.11 �Fig.

22�c��, this asymmetry begins to extend to the nodal direc-

tion, until at �=0.08 �Fig. 22�d�� the particle-hole asymmetry

is complete throughout the Brillouin zone. These spectral

distributions reveal that the particle-hole asymmetry is a di-

rect consequence of the pseudogap, which gradually devel-

ops with doping in the region ��0.02. . .0.05 above EF, and

which is driven by the �� ,0� component of the self-energy.

The momentum-dependent opening of the pseudogap

above EF, and the particle-hole asymmetry caused by the

collective mode seen in Im �X��� �see Fig. 13�, are in quali-

tative agreement with ARPES data.71 Although DMFT cal-

culations for even larger clusters provide even better momen-

tum differentiation, the present results for 2�2 clusters

reveal that spatial degrees of freedom give rise to dramatic

new phenomena absent in a local description, in particular,

the collective mode in the �� ,0� component of the self-

energy at small positive frequencies. It would be very inter-

esting to check whether the dispersion of the position � of

this mode with doping can be verified experimentally.

In view of the approximate nature of the momentum in-

terpolation assumed in Eq. �20�, we emphasize that the de-

tails of the spectra shown in Fig. 22 must be regarded with

caution. The main points here are that �i� with decreasing

doping the pseudogap moves closer to EF and gets wider and

�ii� the origin of the pseudogap is the collective mode in

Im �X���, i.e., its effects should be more pronounced near X

than along the nodal direction. Most likely, the difference

between the nodal and antinodal directions will be even more

pronounced in calculations for larger clusters. Thus, the an-

isotropy found here for 2�2 clusters should represent a

lower bound to the actual variation between nodal and anti-

nodal directions. Moreover, only a finer momentum reso-

lution might allow one to distinguish between Fermi arcs and

pockets.

IV. SUMMARY

The effect of short-range correlations in the two-

dimensional Hubbard model is studied within finite-

temperature ED combined with DMFT for 2�2 clusters. A

mixed basis consisting of cluster sites and bath molecular

π0
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3

FIG. 21. �Color online� Cuts through BZ corresponding to

ARPES data in Ref. 71. Solid red curve: approximate noninteract-

ing Fermi surface for hole doping.
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FIG. 22. �Color online� Spectral function A�k ,�� along cuts 1, 2, and 3 �from left to right�; �a� doping �=0.17; �b� �=0.14; �c� �
=0.11; �d� �=0.08; U=2.5, T=0.005.
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orbitals is shown to provide an efficient and accurate projec-

tion of the lattice Green’s function onto the cluster. To evalu-

ate the phase diagram, the onset of non-Fermi-liquid behav-

ior with decreasing hole doping is studied for various

Coulomb energies, temperatures, and next-nearest-neighbor

hopping interactions. The self-energy component �X=��,0����
is shown to exhibit a low-frequency collective mode above

EF, which becomes more intense close to the Mott transition.

This resonance implies the removal of spectral weight from

electron states above to EF and the opening of a pseudogap.

With decreasing doping the pseudogap opens first along the

antinodal direction and then spreads across the entire Fermi

surface. For electron doping, the resonance of �X��� and the

corresponding pseudogap are located below EF, as expected

for the removal of hole states close to EF. In the low-doping

range the density of states at the Fermi level becomes very

asymmetric. Near the onset of non-Fermi-liquid behavior, EF

is at a maximum of the density of states. At smaller doping

EF moves into the pseudogap. This behavior leads to a pro-

nounced particle-hole asymmetry in the spectral distribution

at intermediate hole doping, in agreement with recent

ARPES measurements. The phase diagram shows that for

hole doping �c�0.15. . .0.20 for various system parameters,

i.e., near the optimal doping observed in many high-Tc cu-

prates. The critical electron doping, which marks the onset of

non-Fermi-liquid behavior is systematically smaller than for

hole doping. The Mott transition induced via electron doping

exhibits first-order hysteresis characteristics. In contrast,

within the present cluster ED/DMFT the hole doping transi-

tion appears to be continuous or weakly first order at very

low temperatures. The consistency of these results with pre-

vious work demonstrates that finite-temperature cluster ED/

DMFT is a highly useful and accurate method that comple-

ments alternative cluster DMFT approaches.
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