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The phase diagrams of isotropic and anisotropic triangular lattices with local Coulomb interactions are

evaluated within cluster dynamical mean-field theory. As a result of partial geometric frustration in the

anisotropic lattice, short-range correlations are shown to give rise to re-entrant behavior which is absent

in the fully frustrated isotropic limit. The qualitative features of the phase diagrams including the critical

temperatures are in good agreement with experimental data for the layered organic charge-transfer salts

�-�BEDT-TTF�2Cu�N�CN�2�Cl and �-�BEDT-TTF�2Cu2�CN�3.
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I. INTRODUCTION

The influence of spatial quantum fluctuations on the na-
ture of the Mott transition in strongly correlated systems is
currently of great interest. A class of materials in which these
effects can be studied in detail are the layered charge-transfer
salts of the �-�BEDT-TTF�2X family, where X denotes an
inorganic monovalent anion such as Cu�N�CN�2�Cl or
Cu2�CN�3. The electronic properties of these compounds

have been shown to be highly sensitive functions of hydro-

static pressure.1–8 As a result, the temperature versus pres-

sure phase diagram is remarkably rich, exhibiting Fermi-

liquid and bad-metallic behavior, superconductivity as well

as paramagnetic and antiferromagnetic �AF� insulating

phases. These observations suggest fascinating connections

to analogous phenomena in various transition-metal oxides.9

A feature of particular interest in the organic salts is mag-

netic frustration. Since the geometric structure corresponds

to an anisotropic triangular lattice with inequivalent

nearest-neighbor hopping interactions t and t�,10,11 long-

range magnetic ordering becomes increasingly frustrated if

the lattice is nearly isotropic, giving rise to an exotic spin-

liquid phase in the absence of symmetry breaking.12

Such a spin-liquid phase5,7,13 is realized in the organic insu-

lator �-�BEDT-TTF�2Cu2�CN�3 �denoted below as �-CN�
which corresponds to t��1.06t, whereas

�-�BEDT-TTF�2Cu�N�CN�2�Cl �denoted as �-Cl� with t�
�0.75t is an AF insulator.3,4 AF order is also found in those

Pd�dimt�2 salts for which 0.55� t� / t�0.85. In contrast,

C2H5�CH3�3P�Pd�dimt�2�2 with t�=1.05t is a valence-bond

solid insulator at ambient pressure.14 Experiments on these

kinds of two-dimensional frustrated systems have greatly

stimulated theoretical investigations of the electronic and

magnetic properties of triangular lattices.15–28

The focus of the present study is the bandwidth-controlled

finite-temperature phase diagram of the Hubbard model for

isotropic and anisotropic triangular lattices. The key result is

that small changes in the ratio t� / t can give rise to funda-

mental changes of the phase diagram. Thus, partial and full

magnetic frustration reveal strikingly different metal-

insulator coexistence regions in qualitative agreement with

the experimental phase diagrams for �-Cl �Ref. 4� and

�-CN.7

The anisotropic triangular lattice has recently been stud-

ied also by Ohashi et al.26 who used dynamical mean-field

theory �DMFT� �Ref. 29� with a cluster extension to account

for spatial fluctuations. Although at t��0.8t re-entrant be-

havior was found as observed for �-Cl, the calculated Tc was

much larger than the measured value. Moreover, only the

lower boundary of the metal-insulator coexistence region

was determined. Here, we investigate both the isotropic and

anisotropic triangular lattices and use exact diagonalization

�ED� �Ref. 30� combined with cluster DMFT �Ref. 31� to

evaluate the upper and lower phase boundaries, Uc1�T� and

Uc2�T�, of the coexistence region. As shown below, the shape

of these boundaries as well as the critical temperatures are

consistent with the experimental data for �-Cl and �-CN.

II. THEORY AND RESULTS

The minimal model Hamiltonian that captures the inter-

play between geometrical frustration and strong Coulomb

interaction present in the conducting layers of organic salts

such as �-Cl and �-CN is

H = − �
ij�

tij�ci�
+

c j� + H.c.� + U�
i

ni↑ni↓ − ��
i�

ci�
+

ci�, �1�

where the sum in the first term is limited to nearest-neighbor

sites. The hopping integrals in a unit cell consisting of three

sites are t13= t23= t and t12= t�. The bandwidth is W=9t for

t�= t and W=8.5t for t�=0.8t. The chemical potential � is

fixed to give half filling. Within cluster DMFT the interacting

lattice Green’s function in the cluster site basis is defined as

Gij�i�n� = �
k�

�i�n + � − t�k�� − ��i�n��ij
−1, �2�

where k� extends over the reduced Brillouin zone and �n

= �2n+1��T are the Matsubara frequencies. t�k�� denotes the

hopping matrix for the superlattice and ��i�n� represents the

nondiagonal cluster self-energy matrix. This self energy is

calculated within ED where the environment of the three-site

cluster is replaced via a bath consisting of six or nine levels,

i.e., for a total cluster size ns=9 or ns=12. The calculations

are carried out on a site basis and on a mixed site/molecular-
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orbital basis. Due to ED finite-size effects, these treatments

give results that differ quantitatively. Nevertheless, the quali-

tative features of the phase diagrams are consistently repro-

duced by these ED versions. Details of the cluster ED/DMFT

formalism can be found in Ref. 32.

Figure 1�a� shows the calculated phase diagram for the

anisotropic lattice in the region below the critical tempera-

ture. To facilitate the comparison with the experimental data

for �-Cl,4 the hopping matrix elements are chosen as t

=0.04 eV and t�=0.8t to reproduce the single-particle band-

width, W=0.34 eV.33 A similar value was used in the nu-

merical renormalization group �NRG� DMFT analysis of the

high-T data in Ref. 4. Since the data were plotted in a T / P

phase diagram, we show the transition temperatures as func-

tions of the inverse Coulomb energy. Increasing pressure P

implies increasing electronic bandwidth so that this measure-

ment is equivalent to keeping W fixed and reducing U in the

calculation. The phase boundaries of the coexistence region

are obtained by carefully increasing or decreasing U from the

metallic or insulating domains, respectively. Figure 1�b�
shows the phase diagram for the isotropic case correspond-

ing to �-CN.

The critical temperatures for t�=0.8t and t�= t, Tc

�50 K�0.11t, are consistent with the measured values Tc

�40 K for �-Cl �Ref. 4� and Tc�50 K for �-CN.7 Tc

�0.1t was recently obtained also for the fully unfrustrated

square lattice.34 On the other hand, within quantum Monte

Carlo �QMC� DMFT at temperatures T=0.1t–1.0t, Ohashi et

al.26 found a much larger value Tc�0.3t�140 K. The ex-

perimental data and the present ED/DMFT results suggest

that the metal-insulator coexistence region is located at tem-

peratures below those considered in Ref. 26.

For t�=0.8t, the first-order phase boundaries separating

the Fermi liquid from the Mott insulator in Fig. 1�a� show

the same kind of re-entrant behavior as measured for �-Cl.

For instance, at U=
1

3
eV and T�50 K the system is a Mott

insulator which turns into a Fermi liquid if T is lowered to

about 20 K. Further reduction in T reverts the system to a

Mott insulator, just as seen in the data �we do not consider

here the antiferromagnetic insulating phase which is detected

at even lower temperature�. Ohashi et al.26 found re-entrant

behavior at considerably higher temperatures.

At present the origin of differences between the phase

diagram for t�=0.8t shown in Fig. 1 and the one found by

Ohashi et al. is not clear. One reason might be that we con-

sider a triangular lattice �three sites per cluster� while in Ref.

26 a square lattice with one diagonal was used �four sites per

cluster�. However, since the experimentally observed critical

temperature is much lower than the range treated in Ref. 26,

it would be interesting to apply continuous-time QMC to this

problem in order to reach lower temperatures.

The re-entrant behavior for t�=0.8t is in striking contrast

to the phase diagram obtained for the isotropic triangular

lattice shown in Fig. 1�b�. This limit resembles more closely

the phase diagram derived within single-site DMFT.29 The

main effect of short-range fluctuations in the isotropic case is

a significant lowering of the critical Coulomb energy. Here,

Uc2�1 /2.63 eV�9.5t, whereas Uc2�12t–15t in local

DMFT for the triangular lattice.35,36 Comparing Figs. 1�a�
and 1�b�, it is evident that anisotropy causes a further lower-

ing of the critical Coulomb energies. This trend is consistent

with Uc�6t for the fully unfrustrated square lattice34,37

which is topologically equivalent to the triangular lattice in

the limit t�=0.

It is interesting also to analyze the width of the metal-

insulator coexistence region obtained by increasing vs

decreasing pressure. For �-Cl, it is observed at P

�200–400 bar, which according to the high-T NRG analy-
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FIG. 1. �Color online� Phase diagrams of Hubbard model for anisotropic triangular lattice �t�=0.8t� and isotropic triangular lattice

�t�= t�, evaluated within ED cluster DMFT for t=0.04 eV. Plotted are the first-order metal-insulator phase boundaries as functions of inverse

local Coulomb energy U. In the experimental setup increasing hydrostatic pressure P implies increasing bandwidth W or decreasing U. The

re-entrant behavior found for t�=0.8t is absent in the isotropic limit t�= t.
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FIG. 2. �Color online� Nearest-neighbor spin correlations in iso-

tropic and anisotropic triangular lattices for T=0.05t, t�= t12, and

t= t13= t23. Strong enhancement of spin correlations occurs for mod-

erate deviations from the isotropic limit.
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sis corresponds to bandwidth changes of about 2%.4 The

calculated coexistence region shown in Fig. 1�a� is only

slightly wider than this experimental range.

The qualitative change in the phase diagram caused by

reduced geometrical frustration can be understood by analyz-

ing the magnetic properties of the frustrated lattice. In the

U→� limit, the Hubbard model can be mapped onto the

anisotropic Heisenberg model with J� /J=0.64 and J� /J=1

for t�=0.8t and t�= t, respectively. At T=0, t�= t yields long-

range AF order of the 120° type whereas t�=0.8t gives rise to

row-wise AF Néel order.38 However, in the Heisenberg

model the temperature scale for AF order in the isotropic

triangular lattice is expected to be strongly suppressed rela-

tive to the square lattice. For the Hubbard model, the cluster

DMFT provides information on how the magnetic correla-

tions �SizS jz� vary across the Mott transition in the isotropic

case compared with t�=0.8t. The results shown in Fig. 2

demonstrate that spin correlations are strongly enhanced as

the geometrical frustration is suppressed. The isotropic lat-

tice displays weak AF coupling for any U. This is in contrast

to t�=0.8t, for which the weaker hopping amplitude displays

ferromagnetic correlations whereas spins with the larger hop-

ping amplitude are antiferromagnetically coupled, indicating

a row-wise AF Neel arrangement of spins. Thus, t�=0.8t

induces a much stronger tendency toward magnetic order

than t�= t, which explains why the re-entrant behavior occurs

for t�=0.8t but not for t�= t �see Fig. 1�. At low T, the elec-

tron entropy is suppressed for t�=0.8t as compared to t�= t.

As T is increased for t�=0.8t, the system lowers its free

energy by transforming to a metal since the entropy of the

metal exceeds that of the ordered insulator. At even higher
temperatures the system gains entropy of log �2� by trans-
forming back into a paramagnetic insulator. This result is

analogous to the one found for the unfrustrated square

lattice.34 In the isotropic lattice magnetic ordering is sup-

pressed and the re-entrant behavior disappears.

To illustrate the first-order nature of the metal-insulator

transition we show in the left panel of Fig. 3 the spectral

weights of the cluster sites at EF=0 as functions of U. The

right panel shows the average double occupancy docc

=�i�ni↑ni↓� /3. Both quantities exhibit hysteresis for increas-

ing and decreasing U, indicating coexistence of metallic and

insulating solutions.

Finally, Fig. 4 shows the spectral densities at Coulomb

energies below and above the Mott transition for T=0.02t

and t�=0.8t. Plotted is the average over the three inequiva-

lent sites within the unit cell. Since we are here concerned

with the metal-insulator transition we give the ED cluster

spectra which can be evaluated without requiring extrapola-

tion from the Matsubara to real frequencies. In the metallic

phase the spectra reveal large quasiparticle weight at low

frequencies as well as upper and lower Hubbard bands at

high frequencies. The insulating phase exhibits a Mott gap as

well as pronounced spectral weight in the region of the Hub-

bard bands. Qualitatively similar features are also seen for

the unfrustrated square lattice.34,39

III. CONCLUSION

In conclusion, the phase diagrams of the Hubbard model

for the isotropic and anisotropic triangular lattices have been
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FIG. 3. �Color online� Hysteresis behavior of spectral weights Ai�0� at EF=0 and average double occupancy docc as functions of Coulomb

energy for anisotropic triangular lattice �t=1, t�=0.8t, and T=0.05t�. Red solid �blue dashed� curves: increasing �decreasing� U.

0

0.1

0.2

0.3

-8 -4 0 4 8

D
e

n
s
it
y

o
f
S

ta
te

s

ω

U=7.5t

0

0.1

0.2

0.3

-8 -4 0 4 8

D
e

n
s
it
y

o
f

S
ta

te
s

ω

U=8.2t

(b)(a)

FIG. 4. �Color online� Average spectral distributions of cluster sites below and above the Mott transition for the anisotropic triangular

lattice �t=1, t�=0.8t, and T=0.02t� for Coulomb energies U=7.5t and U=8.2t. The bare density of states is shown by the dashed blue curve.
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determined within cluster DMFT and exact diagonalization.

For moderate frustration, t�=0.8t, re-entrant behavior is

found and the phase boundaries of the metal-insulator coex-

istence region are in qualitative agreement with the T / P

phase diagram observed experimentally for the anisotropic

organic salt �-Cl. The re-entrant behavior disappears in the

fully frustrated limit, t�= t, in agreement with measurements

on the nearly isotropic compound �-CN. The phase diagram

then bears overall resemblance to the one obtained within

local DMFT, i.e., in the absence of intersite correlations. The

critical temperatures, Tc�50 K for the isotropic and aniso-

tropic lattices, are consistent with the data for �-CN and

�-Cl. These results should also be relevant for the phase

diagram of �Pd�dimt�2�2 salts exhibiting small deviations

from the isotropic lattice.40
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