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We present an embedding approach based on localized basis functions which permits an efficient application

of the dynamical mean-field theory �DMFT� to inhomogeneous correlated materials, such as semi-infinite

surfaces and heterostructures. In this scheme, the semi-infinite substrate leads connected to both sides of the

central region of interest are represented via complex energy-dependent embedding potentials that incorporate

one-electron as well as many-body effects within the substrates. As a result, the number of layers which must

be treated explicitly in the layer-coupled DMFT equation is greatly reduced. To illustrate the usefulness of this

approach, we present numerical results for strongly correlated surfaces, interfaces, and heterostructures of the

single-band Hubbard model.
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I. INTRODUCTION

In recent years, there is growing interest in the electronic

properties of surfaces and interfaces of strongly correlated

materials.1 For instance, the discrepancy between photoemis-

sion spectra and theoretically derived bulk spectra of a num-

ber of transition-metal oxides has been attributed to changes

in the electronic structure at the surface of these materials.2–4

Regarding the interface, heterostructures made out of thin

atomic layers of perovskitelike oxides have been the target of

intense study as promising candidates for electron-

correlation-based devices.5–9 A well-known example is the

interface between LaTiO3 and SrTiO3, which exhibits metal-

lic behavior in spite of the fact that the two constituent bulk

materials are insulators.5

On the theoretical side, inhomogeneous layered systems

have been studied by several authors within the dynamical

mean-field theory10 �DMFT�, which contributed significantly

in the last decade to the understanding of a variety of

strongly correlated bulk materials.11 Potthoff and

co-workers12,13 investigated the metal-insulator transition at

the surface of the single-band Hubbard model. Liebsch14

studied the t2g valence bands of perovskitelike oxides such as

SrVO3 by using a three-band tight-binding Hamiltonian and

showed that electrons at the surface are more strongly corre-

lated than in the bulk due to the reduction in the effective

surface bandwidth. Ishida et al.15 extended this work and

showed that in addition to the band narrowing, surface-

induced changes in the local crystal field can also signifi-

cantly influence the role of Coulomb correlations on the sur-

face local spectral distribution. Helmes et al.16 considered a

metal-insulator interface within the single-band Hubbard

model and studied the scaling behavior of the metallic pen-

etration depth into the Mott insulator near the critical Cou-

lomb energy. Okamoto and Millis17,18 investigated the elec-

tronic structure of heterostructures in which a finite number

of Mott-insulator layers were sandwiched between band in-

sulators. Analogous calculations for heterostructures consist-

ing of correlated model systems were also carried out by

Kancharla and Dagotto19 and Rüegg et al.20 Modulation dop-

ing effects at heterojunctions were investigated by Oka and

Nagaosa,21 Lee and MacDonald,22 and González et al.23

Electron transport through a nanosize correlated-electron
system connected to metal electrodes was studied by com-
bining DMFT and a nonequilibrium Green’s function
technique.24,25

To solve the DMFT equation for inhomogeneous layered
systems one needs to construct the lattice Green’s function of
surfaces or interfaces consisting of an infinite number of
atomic layers. While this is feasible within a linearized ver-
sion of DMFT,12 for a complete numerical solution of the
DMFT equation most previous calculations employed a slab
model consisting of a finite number of layers to simulate the
system. Although finite-size effects can be reduced by sys-
tematically increasing the number of layers, the one-electron
density of states �DOS� projected on each layer converges
rather slowly with increasing number of layers since the en-
ergy levels in the normal direction are discrete. Hence, it is
desirable to develop a method for solving the DMFT equa-
tion for truly semi-infinite surfaces and interfaces between
two semi-infinite materials. Freericks26 solved the DMFT
equation using the Falikov-Kimball Hamiltonian for a doped
Mott insulator sandwiched between two semi-infinite metals,
considering explicitly 30 layers in each of the metallic leads

and up to 80 layers in the barrier region.

In the present work we pursue a different approach by

extending the concept of tight-binding embedding, originally

developed for the evaluation of the electronic properties of

defects in solids, to the DMFT for inhomogeneous layered

systems. The key point is that we include only those atomic

planes in the self-consistent many-body calculation that are

necessary to obtain the converged layer-dependent self-

energy. This simplification greatly reduces the computational

effort compared to previous inhomogeneous DMFT schemes.

As a result of this conceptual improvement the study of re-

alistic heterostructures consisting of multiband systems

should become feasible in the future.

We employ a localized basis set to describe the Hamil-

tonian of the system. The heterostructure is divided into a

central interface region containing a finite number of atomic

layers, �, and two adjacent semi-infinite bulk regions

coupled to �. The interface region is assumed to include the

first few surface layers of the actual substrates. Both the
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central region and the substrates may exhibit strong correla-

tion effects. Within the one-electron approximation, the ef-

fects of an adjacent semi-infinite system on � can be ex-

pressed as a complex energy-dependent potential acting on

the Hamiltonian matrix of �, which is called “tight-binding

embedding potential.”27–29 The same quantity is called “con-

tact self-energy” in transport theory based on the nonequilib-

rium Green’s function formalism.30,31 Here, we extend this

embedding approach in order to include Coulomb correla-

tions in the substrate within the single-site DMFT. Thus, the

energy-dependent embedding potential accounts for one-

electron and many-body effects within the substrates. The

advantage of this extension is that the layer-coupled DMFT

equation for a nonperiodic surface or interface system made

up of an infinite number of atomic layers is greatly simplified

since only a small number of layers belonging to � needs to

be treated explicitly. The embedding potential is derived

from a separate DMFT calculation for the adjacent bulk sys-

tems.

The plan of this paper is as follows. In Sec. II we present

our formalism that combines the tight-binding embedding

theory with DMFT. As examples, in Sec. III we present nu-

merical results for surfaces and interfaces of the single-band

Hubbard model at half filling. A summary is given in Sec. IV.

II. THEORY

A. Hamiltonian

We take the z axis as the surface normal pointing from left

to right. The jth atomic layer is located at z=z j �z j �z j−1�.
The position of the mth atom in layer j is denoted by ra

= �xmj ,z j�, where the index a represents a pair of indices

�m , j�. The localized basis function centered at ra with orbital

index � and spin index � is denoted by �a��. The basis set

��a��� is assumed to be orthonormal. Hereafter, we use indi-

ces with tilde such as p̃ and q̃ to refer to basis functions in

the basis set ��a���. With this abbreviated notation, the one-

electron part of the Hamiltonian is written as

ĥ = �
p̃,q̃

tp̃q̃cp̃
†
cq̃, �1�

where cp̃
†

and cq̃ are the creation and annihilation operators,

respectively, and summation is taken over pairs �p̃ , q̃� having

the same spin and located on the same or nearby atomic

sites. The one-electron Hamiltonian may be derived, for ex-

ample, from a first-principles electronic-structure calculation

within density-functional theory through the use of maxi-

mally localized Wannier functions.32

In the present work we consider onsite Coulomb interac-

tions,

v̂ =
1

2
�

p̃,q̃,r̃,s̃

Vp̃q̃,r̃s̃cp̃
†
cq̃

†
cs̃cr̃, �2�

where p̃, q̃, r̃, and s̃ are located on the same site, and in

addition, p̃ and r̃ �q̃ and s̃� have the same spin. The full

Hamiltonian of the system is given by Ĥ= ĥ+ v̂.

We now divide the system into three parts. The central

region with atomic layer index j running from 1 to N is

called �. The semi-infinite region with layer number j�1 is

called “left substrate” L, and the semi-infinite region with j

�N is called “right substrate” R. In the case of a semi-

infinite surface, it is understood that the system consists only

of � and R. In the following, we present the theory for the

interface geometry. The analogous equations for a semi-

infinite surface are derived straightforwardly by omitting all

terms with index L. The one-electron Hamiltonian ĥ in Eq.

�1� is decomposed into seven parts,

ĥ = ĥLL + ĥ�� + ĥRR + �
J=L,R

�ĥ�J + ĥJ�� , �3�

with

ĥJK = �
j̃,k̃

� j̃�ĥ�k̃�c
j̃

†
ck̃, �4�

where J and K denote one of the three regions, L, �, and R,

and the basis function j̃ �k̃� belongs to region J �K�. It is to be

noted that the matrix elements of the inter-regional terms, tw̃ j̃,

where w̃�� and j̃�J �J=L ,R�, are nonvanishing only

when w̃ and j̃ are close to the boundary between � and J

since transfer integrals are short ranged. For the same reason,

ĥLR and ĥRL are assumed to vanish.

B. Noninteracting Green’s function

As a brief review of the tight-binding embedding

theory,27–29 we outline first the calculation of the Green’s

function �resolvent� of the one-electron Hamiltonian ĥ,

gp̃q̃�	� = �p̃��	 − ĥ�−1�q̃� . �5�

When both indices of this Green’s function belong to �, the

tight-binding embedding theory reveals that the interaction

with the left and right substrates can be expressed in terms of

embedding potentials acting on �,

s
w̃w̃�

L �	� = tw̃l̃gl̃l̃�

L
�	�tl̃�w̃�

, �6�

s
w̃w̃�

R �	� = tw̃r̃gr̃r̃�

R �	�tr̃�w̃�
, �7�

where w̃, w̃���, and the summation is implied for repeated

indices. ĝL and ĝR are the Green’s functions of the left and

right substrates, respectively, and are defined as

ĝL�	� = �	 − ĥLL�−1, �8�

ĝR�	� = �	 − ĥRR�−1. �9�

It should be noted that ŝL and ŝR in Eqs. �6� and �7� are

nonvanishing only when both w̃ and w̃� are located close to

the boundaries of �.

Using these embedding potentials, the Green’s function

defined in Eq. �5�, when both indices belong to �, can be

calculated as

gw̃w̃�
�	� = �w̃�		 − ĥem�	�
−1�w̃�� , �10�

where the effective Hamiltonian in the embedded region � is

given by
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ĥem = ĥ�� + ŝL�	� + ŝR�	� . �11�

Thus, the calculation of a system which is nonperiodic in the

z direction is reduced to the inversion of a matrix defined in

� with a finite thickness.

We point out that in spite of the finite size of the central

interface region, the use of the complex embedding poten-

tials ensures that the spectral distribution is continuous. In

particular, for a uniform system with layer-independent en-

ergy levels and hopping matrix elements, the local DOS of

each layer coincides with the bulk DOS. Thus, there are no

discretization effects stemming from the finite number of

layers in the central region.

C. Dynamical mean-field theory

We now incorporate the Coulomb interactions and calcu-

late the finite-temperature Green’s function of the full Hamil-

tonian, Ĥ= ĥ+ v̂. The effects of the Coulomb interactions can

be described by a frequency-dependent self-energy 
̂�i�n�,
where �n= �2n+1��T are Matsubara frequencies at tempera-

ture T. In the present work, we restrict ourselves to the

single-site approximation and assume that the matrix ele-

ments 
p̃q̃�i�n� are nonvanishing only when p̃ and q̃ are on

the same atomic site. Hence,


̂�i�n� = �
J,K


̂JK�i�n�
JK, �12�

where 
̂JK is defined in the same way as Eq. �4� with ĥ being

replaced by 
̂. The lattice Green’s function of the whole

system is defined by

Gp̃q̃�i�n� = �p̃�	i�n + � − ĥ − 
̂�i�n�
−1�q̃� , �13�

where � denotes the chemical potential of the system.

As in the case of noninteracting systems, we define the

embedding potentials of the left and right correlated sub-

strates as

S
w̃w̃�

L �i�n� = tw̃l̃Gl̃l̃�

L
�i�n�tl̃�w̃�

, �14�

S
w̃w̃�

R �i�n� = tw̃r̃Gr̃r̃�

R �i�n�tr̃�w̃�
, �15�

where ĜL�i�n� and ĜR�i�n� are defined by

ĜL�i�n� = 	i�n + � − ĥLL − 
̂LL�i�n�
−1, �16�

ĜR�i�n� = 	i�n + � − ĥRR − 
̂RR�i�n�
−1. �17�

With these definitions, the lattice Green’s function defined by

Eq. �13�, when both indices belong to �, is calculated as

Gw̃w̃�
�i�n� = �w̃�	i�n + � − Ĥem�i�n�
−1�w̃�� , �18�

where the interacting embedded Hamiltonian is given by

Ĥem = ĥ�� + 
̂���i�n� + ŜL�i�n� + ŜR�i�n� . �19�

Suppose now that both substrates are semi-infinite crys-

tals having three-dimensional translational symmetry and

that the boundary between � and L �R� is positioned a few

atomic layers toward the interior of the crystal such that the

electronic structure in L �R� converges to that of the bulk. We

may then assume that the matrix elements of 
̂JJ on all

atomic sites in J �J=L ,R� become identical with those of the

Coulomb self-energy on the corresponding atomic site in the

bulk crystal. Therefore, we are left with determining the self-

energy in the embedded region, 
̂��. This can be achieved

via the following three steps: �i� perform a standard DMFT

calculation for the bulk crystals corresponding to the left and

right substrates to obtain the Coulomb self-energies in the

bulk, �ii� construct the embedding potentials of both sub-

strates, ŜL and ŜR, and �iii� perform a layer-coupled DMFT

calculation in the embedded region � to self-consistently

determine 
̂��.

The embedded DMFT calculation in the third step is con-

ducted in a standard manner. Starting with an input lattice

self-energy 
̂��, one calculates the lattice Green’s function

Ĝ�i�n� in � by using Eq. �18�. To avoid double counting of

local Coulomb interactions, it is necessary to remove at each

atomic site in �, ra, the onsite Coulomb self-energy term

from the lattice Green’s function. This yields the bath

Green’s function,

Ĝ0,aa�i�n� = 	Ĝaa�i�n�−1 + 
̂aa�i�n�
−1, �20�

where 
̂aa is the projection of 
̂�� on atomic site ra defined

by


̂aa�i�n� = �
w̃,w̃�

�w̃�
̂���i�n��w̃��cw̃
†
cw̃�

, �21�

with both w̃ and w̃� located on ra. Ĝaa, the projection of the

lattice Green’s function Ĝ on atomic site ra, is defined in the

same way. Both 
̂aa and Ĝaa are Na�Na matrices, where Na

is the number of basis functions centered at ra. Within the

single-site approximation, 
̂�� is diagonal with respect to

atomic sites, so that


̂���i�� = �
a��


̂aa�i�n� . �22�

The bath Green’s function Ĝ0,aa determines the Weiss

mean-field Hamiltonian at site ra. One then adds the local

Coulomb interactions of the form Eq. �2� and solves the

single-site many-body impurity problem at site ra by numeri-

cal methods, such as the quantum Monte Carlo approach,33,34

exact diagonalization35 �ED�, or the numerical

renormalization-group �NRG� method.36 The resultant impu-

rity Green’s function, Ĝaa
imp, is used to derive the output im-

purity self-energy via


̂aa
imp�i�n� = Ĝ0,aa�i�n�−1 − Ĝaa

imp�i�n�−1. �23�

The key assumption in DMFT now is that this impurity self-

energy is a physically reasonable representation of the lattice

self-energy. Thus, 
̂aa�i�n�� 
̂aa
imp�i�n�. This self-energy is

therefore used as input in Eqs. �19� and �20� in the next

iteration. This procedure is repeated until the difference be-
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tween the input and output self-energies becomes sufficiently

small for all atomic sites in the embedded region �.

III. RESULTS AND DISCUSSION

A. Hubbard model

To demonstrate the DMFT embedding approach we

present results for the single-band Hubbard model,

Ĥ = �
a�

	an̂a� − �
�ab��

�tabca�
†

cb� + H.c.� + �
a

Uan̂a↑n̂a↓,

�24�

where n̂a�=ca�
† ca� and the summation in the second term is

taken over nearest-neighbor sites. We consider a simple-

cubic lattice with its three principal axes oriented along the x,

y, and z directions. The interface points in the �001� direc-

tion. In each layer, all sites are assumed to be equivalent

�1�1 structure�. We label the site energy of layer j as 	 j, the

Coulomb energy of layer j as U j, the x and y components of

the in-plane transfer integrals in layer j as t j
x and t j

y, and the

transfer integral between two nearest-neighbor layers, j and

k, as t jk
z . The Hamiltonian parameters in L �R� represent a

particular bulk crystal with a single atom in the unit cell. The

Hamiltonian parameters in � approach those at the left-hand

side �right-hand side� crystal near the boundary to L �R�,
while they are allowed to deviate from these bulk parameters

in the interior of region �. In the present work, we consider

only paramagnetic solutions and omit the spin index � in the

discussion below.

As an input, one needs the embedding potentials of both

substrates. Let us consider the left substrate L, whose site

energy, Coulomb energy, and transfer integrals are given by

	L, UL, tL
x , tL

y , and tL
z . First, we ignore the Coulomb interac-

tions and derive the embedding potential for noninteracting

electrons as defined by Eq. �6�. Because of translational sym-

metry in the plane, the embedding potential is diagonal with

respect to the two-dimensional wave vector k= �kx ,ky� and

can be expressed as sij
L�k ,	� by introducing a mixed repre-

sentation with k and layer indices in �, i, and j. Here, the

wave vector is measured in units of the inverse of lattice

constant, i.e., −��kx , ky ��. For the present nearest-

neighbor transfer model, the only nonvanishing element is

s11
L �k ,	�, which is given as

s11
L �k,	� = �t01

z �2g00
L 		 − EL�k�
 , �25�

where

EL�k� = 	L − 2tL
x cos�kx� − 2tL

y cos�ky� , �26�

and g
j j�

L
with j; j��1 denotes the Green’s function of a semi-

infinite tight-binding chain with nearest-neighbor transfer in-

tegral, −tL
z . According to Kalkstein and Soven,37

g00
L �w� =

w − �w2 − 4�tL
z �2

2�tL
z �2

. �27�

The embedding potential of region L in the presence of

Coulomb interactions is obtained by incorporating the effects

of electron correlations in the bulk crystal into Eq. �25� as

S11
L �k,i�n� = �t01

z �2g00
L �w� , �28�

with

w = i�n + � − EL�k� − �a�
̂LL�i�n��a� , �29�

where a is any site in L. On the right-hand side of Eq. �29�,
the Coulomb self-energy in L is determined by a bulk DMFT

calculation. The embedding potential of the right substrate R

can be constructed in the same way.

Using Eq. �18�, the lattice Green’s function in region � is

now calculated as

Gab�i�n� =
 dk

�2��2
eik·�xmj−xm�j��

��j�	i�n + � − Ĥem�k,i�n�
−1�j�� , �30�

where a= �m , j�, b= �m� , j��, 1� j, and j��N. In the mixed

representation the embedded Hamiltonian, Ĥem�k , i�n�, is an

N�N matrix,

�j�Ĥem�j�� = E j�k�
 j j�
− t

j j�

z
+ 
 j�i�n�
 j j�

+ S
j j�

L �k,i�n�

+ S
j j�

R �k,i�n� . �31�

Here,

E j�k� = 	 j − 2t j
x cos�kx� − 2t j

y cos�ky� . �32�

The Coulomb self-energy of layer j, 
 j�i�n�

= �a�
̂���i�n��a� with a= �m , j�, is diagonal with respect to

the layer index and has no dependency on k within the

single-site approximation. As argued above, in a nearest-

neighbor tight-binding system, only the embedding poten-

tials S11
L �k , i�n� and SNN

R �k , i�n� are finite. The layer-

dependent onsite Green’s function for a=b= �m , j� will be

denoted as G j�i�n� and the corresponding bath Green’s func-

tion as G0,j�i�n�.

B. Numerical results

We consider first the surface of a semi-infinite Hubbard

model having uniform Hamiltonian parameters, i.e., U j =U,

	 j =−U /2, and t j
x= t j

y = t jk
z = t for all layers including the sur-

face plane. By choosing the chemical potential � as zero, all

layers become half filled due to electron-hole symmetry. For

zero temperature, the same system was studied by Potthoff

and Nolting,12 who showed that there is a uniform critical

Coulomb energy Uc, at which both bulk and surface simul-

taneously undergo a metal-insulator transition. For a com-

plete numerical solution of the DMFT equation, they adopted

a slab geometry consisting of 10–20 atomic layers rather

than treating semi-infinite surfaces.

As impurity solver we employ the finite-temperature ED

method. Thus, for each layer j, the bath Green’s function

	Eq. �20�
 is projected onto a small cluster consisting of a

single impurity surrounded by several bath levels. Equation

�20� is therefore approximated as
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G0,j�i�n� � �i�n + � − E j − �
k=1

nb �V jk�
2

i�n − E jk

�−1

, �33�

where E j represents an impurity level for layer j, E jk are the

corresponding bath levels, and V jk specify the hybridization

matrix. We use nb=7 bath orbitals in the numerical results

presented below. The inclusion of the fictitious impurity

level E j provides a more accurate projection of G0,j�i�n� than

for a cluster consisting only of bath orbitals. The interacting

Green’s function of the cluster with onsite Coulomb energy

U at finite temperature T is derived by calculating the low

eigenvalues of the cluster via the Arnoldi algorithm and ap-

plying the Lanczos procedure for computing the excited-state

Green’s function. More details of the ED method can be

found in Ref. 38.

In Fig. 1�a� we show the calculated quasiparticle weight Z

of the semi-infinite Hubbard model at T=0.02 in the metallic

range U�Uc as a function of layer index j, where the out-

ermost layer corresponds to j=1. The hopping integral is

taken to be t=1 and defines the energy scale. The crosses on

the vertical axis indicate the Z values of the bulk metal de-

termined by a separate bulk DMFT calculation. The embed-

ding potential acts on layer N on the right edge of the surface

region.

Solid dots and open circles provide the results obtained
for N=5 and N=3 embedded layers, respectively. The excel-
lent agreement between the two sets of calculations demon-
strates that the embedding potential represents correctly the
one-electron as well as many-body properties of the semi-
infinite substrate. Moreover, it is evident that one needs only
a few embedded layers to simulate the semi-infinite system.
Although the latter point is not crucial for single-band model
systems, for the calculation of realistic multiorbital materials
the embedding treatment yields a substantial reduction in
computer time compared with slab calculations in which at
least �10 layers must be explicitly taken into consideration.

The rapid convergence of the results with respect to N can
be understood from the layer dependence of the self-energy.
We plot in Fig. 1�b� the imaginary part of the Coulomb self-
energy 
 j�i�n� for the outermost three layers �j=1,2 ,3� as a
function of Matsubara frequency for U=10, where we in-
creased the number of embedded layers up to N=7. The

self-energy for 4� j�7 �not shown� is hardly distinguish-

able from that for j=3 and coincides with the corresponding

bulk self-energy within numerical errors. This explains why

one can obtain the converged Z values even with the N=3

calculation.

As can be seen in Fig. 1�a�, the calculated Z exhibits an

oscillatory behavior near the surface which follows from the

Friedel oscillations of the layer-dependent density of states.

In the first layer, Z is smaller than the bulk value, implying

that electrons at the surface are more strongly correlated than

in the bulk. As discussed by Potthoff and Nolting12 and

Liebsch,14 this is essentially a one-electron effect arising

from the layer dependence of the one-electron DOS of the

cubic tight-binding Hamiltonian.37 Because of the loss of

nearest-neighbor sites, the effective bandwidth in the first

layer is reduced so that Coulomb correlations at the surface

are enhanced.

Next, we study the interface between two semi-infinite

Hubbard models. We consider a uniform system with regard

to the transfer integrals, i.e., t j
x= t j

y = t jk
z = t=1. In the left half

space, we choose the Coulomb energy as UL=6 to represent

a good metal with a relatively large quasiparticle weight,

while we take a variable, larger Coulomb energy UR in the

half space on the right. Furthermore, by choosing 	 j as

−UL /2 and −UR /2 in the left and right half spaces, respec-

tively, and by setting the chemical potential as �=0, all lay-

ers are half filled. The same model was recently investigated

by Helmes et al.16 who used the NRG method as impurity

solver. These authors focused on the critical range for UR

�Uc and discussed the scaling behavior of the metallic pen-

etration depth into the Mott insulator. To reduce finite-size

effects, a relatively thick slab consisting of �60 layers was

used to simulate the interface. Also, to avoid numerical dif-

ficulties stemming from the energy discretization the Van

Hove singularity of the two-dimensional layer DOS was cut-

off at a finite value.

Figure 2 shows the calculated quasiparticle weight Z in

the metallic range UR�Uc at T=0.02 as a function of layer

index j, which is measured here relative to the boundary

layer of the left-hand side metal. To describe the deviation of

the electronic structure from that in bulk metal, we incorpo-

rate in the embedded region N=10 layers �solid dots�, of

FIG. 1. �Color online� �a� Quasiparticle weight Z of semi-

infinite Hubbard model for simple-cubic lattice in the �001� orien-

tation as a function of layer index j. Temperature is T=0.02. Solid

dots and open circles are results with N=5 and N=3 embedded

layers, respectively. Crosses on the vertical axis indicate the bulk Z

corresponding to four values of U. Lines are drawn as a guide for

the eyes. �b� Imaginary part of the impurity self-energy of outer-

most layers �j=1,2 ,3� as a function of Matsubara frequency for

U=10 calculated with N=7 embedded layers.
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which the left �right� five layers possess Coulomb energy UL

�UR�. For comparison, we also show for UR=12 �open

circles� the result obtained with only N=6 embedded layers.

The excellent agreement between the two sets of calculations

corroborates again the efficiency of the embedding method

to treat semi-infinite substrates.

The quasiparticle weight Z of the surface layer of the

good metal on the left-hand side is seen to be reduced,

whereas at the surface of the poor metal on the right-hand

side of the boundary plane it is enhanced. Evidently, the

good- or bad-metallic character of one metal spills over into

the neighboring metal. In contrast to the case of the semi-

infinite surface discussed above, this is a genuine many-body

effect since the one-electron DOS is layer independent if the

Coulomb interaction is switched off. The deviation of Z from

the bulk value in the poor metal on the right decreases with

the distance from the boundary plane, which is in accord

with the work of Helmes et al.16 On the left of the boundary

plane, Z is seen to be weakly modified with respect to the

bulk value only in the first two layers. Thus, as a result of

better electronic screening in the good metal, Z approaches

the bulk value more rapidly than in the poor metal. Essen-

tially, one needs to incorporate only one or two layers in the

embedded region to describe the interface properties of the

good metal on the left-hand side.

As the third model system, we study a junction in which a

finite number of strongly correlated-electron layers are sand-

wiched between two weakly correlated metals. We adopt

again a uniform model with respect to transfer integrals, i.e.,

t j
x= t j

y = t jk
z = t=1 for all layers. We assign a nonzero but mod-

erate Coulomb energy UL,R=6 to both metal substrates,

whereas in the central film we choose a larger Coulomb en-

ergy Um. In Fig. 3 we show the calculated quasiparticle

weight Z for a four-layer film as a function of layer index j in

the metallic range Um�Uc. The calculation was carried out

using N=8 embedded layers, which comprise the central
four-layer film and the two outermost layers of metal sub-
strates on both sides. Interestingly, in this thin film Z is very
close to that of the boundary layers of the semi-infinite metal
with U=UR shown in Fig. 2. This rapid convergence of Z
with increasing film thickness may arise partly from the pe-
culiarity of the present model in which the one-electron DOS
is layer independent. Thus, there appear no finite-size effects
such as energy-level discretization in the one-electron spec-
trum at the junction.

We finally consider a metal/insulator/metal junction. Fig-
ure 4�a� shows the quasiparticle weight Z of a four-layer film
with Um=16�Uc sandwiched between two metals with
UL,R=6 at temperature T=0.02. As discussed by Helmes et
al.,16 the metallic states decay within the insulating layers so
that Z becomes finite in the film. In agreement with these
NRG results we find that this penetration depth within the
Mott gap is extremely short. To demonstrate this more
clearly, we plot in Figs. 4�b� and 4�c� the imaginary part of
the layer-dependent Coulomb self-energy 
 j�i�n� for the
outer and inner layers of the film, respectively, as a function
of Matsubara frequency. For comparison, we also show the
imaginary part of the impurity self-energy in the bulk
simple-cubic crystal with U=16. Whereas the bulk self-
energy diverges as �n→0 at this Coulomb energy, the film
self-energy tends to a finite value because of its contact to
the neighboring metal layers. At the film surface, the finite
value is about −10, indicating bad-metallic behavior with a
rather short electron lifetime and a very small quasiparticle
weight of Z�0.005. In the second layer, the limiting value of
the self-energy at low �n is more than 1 order of magnitude

larger than at the surface, implying correspondingly shorter

electronic lifetime and lower quasiparticle weight Z. Thus,

apart from a weak exponential bad-metallic tail, the Mott gap

of the insulating film is virtually impenetrable.

In the applications discussed above we have focused on

the layer variation in the quasiparticle weight Z which fol-

FIG. 2. �Color online� Quasiparticle weight Z at the interface

between two semi-infinite Hubbard models for simple-cubic lattice

in �001� orientation as a function of layer index j. The boundary

between the two metals is marked by a dashed line. Temperature is

T=0.02. Solid dots and open circles show results with N=10 and

N=6 embedded layers, respectively. Crosses on the vertical axis

indicate bulk Z values. Lines are drawn as a guide for the eyes.

FIG. 3. �Color online� Quasiparticle weight Z of the heterostruc-

ture consisting of a four-layer film �j=3, . . . ,6� sandwiched be-

tween two semi-infinite Hubbard models for simple-cubic lattice in

the �001� orientation. Crosses on the vertical axes indicate bulk Z

values for the left and right substrates. Temperature is T=0.02.

Lines are drawn as a guide for the eyes.
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lows from the low-frequency behavior of the layer-

dependent self-energy. The important point here is that to

obtain this converged self-energy for the heterostructure, a

relatively small number of atomic planes near the interface

needs to be treated explicitly in the computationally demand-

ing iterative procedure. Once the converged solution is found

other quantities, such as the layer variation in the spectral

distribution, can be calculated. Since these may involve one-

electron features, e.g., Friedel oscillations, their spatial varia-

tion may be slower than that of the self-energy. This slower

spatial variation, however, does not require a many-body

DMFT calculation for an accordingly wider interface region.

Instead, the DMFT part of the calculation serves to evaluate

exclusively the many-body properties, expressed via the self-

energy, which converge rather quickly near the interface, as

illustrated in detail in the applications in this section.

Electron transport through correlated-electron systems

such as oxide heterostructures and molecules is emerging as

an active field of theoretical studies.24,25,31 To our knowl-

edge, previous studies considered only noninteracting metal

leads connected to a central region with Coulomb interac-

tions. It would be interesting to extend the transport theory to

the case of interacting metal leads as those shown in Figs. 3

and 4.

IV. SUMMARY

We have presented an efficient embedding scheme for

performing DMFT calculations for inhomogeneous layered

systems such as semi-infinite surfaces and heterostructures.

In contrast to previous embedding theories based on tight-

binding basis functions, the embedding potential introduced

here is determined from a separate DMFT calculation for the

bulk substrate materials. It therefore incorporates not only

the one-electron properties but also the many-body effects of

the semi-infinite systems. The interface region in which local

Coulomb interactions are treated self-consistently via the

layer-coupled DMFT also includes the first few layers of the

actual substrates. As examples, we have presented numerical

results for several surfaces and interfaces of the single-band

Hubbard model. These results demonstrate that the represen-

tation of the semi-infinite correlated substrates in terms of

complex energy-dependent embedding potentials greatly re-

duces the numerical effort since only a small number of lay-

ers needs to be explicitly included in the layer-coupled

DMFT equation. Thus, the study of neutral as well as

charged heterostructures involving realistic strongly corre-

lated multiband materials becomes feasible.
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