000007819 001__ 7819 000007819 005__ 20230217124329.0 000007819 0247_ $$2DOI$$a10.1103/PhysRevE.80.061134 000007819 0247_ $$2WOS$$aWOS:000273227500045 000007819 0247_ $$2Handle$$a2128/9318 000007819 037__ $$aPreJuSER-7819 000007819 041__ $$aeng 000007819 082__ $$a530 000007819 084__ $$2WoS$$aPhysics, Fluids & Plasmas 000007819 084__ $$2WoS$$aPhysics, Mathematical 000007819 1001_ $$0P:(DE-HGF)0$$aSuciu, N.$$b0 000007819 245__ $$aPersistent memory of diffusing particles 000007819 260__ $$aCollege Park, Md.$$bAPS$$c2009 000007819 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2009-12-28 000007819 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2009-12-01 000007819 300__ $$a061134-1 000007819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000007819 3367_ $$2DataCite$$aOutput Types/Journal article 000007819 3367_ $$00$$2EndNote$$aJournal Article 000007819 3367_ $$2BibTeX$$aARTICLE 000007819 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000007819 3367_ $$2DRIVER$$aarticle 000007819 440_0 $$04924$$aPhysical Review E$$v80$$x1539-3755 000007819 500__ $$aRecord converted from VDB: 12.11.2012 000007819 520__ $$aThe variance of the advection-diffusion processes with variable coefficients is exactly decomposed as a sum of dispersion terms and memory terms consisting of correlations between velocity and initial positions. For random initial conditions, the memory terms quantify the departure of the preasymptotic variance from the time-linear diffusive behavior. For deterministic initial conditions, the memory terms account for the memory of the initial positions of the diffusing particles. Numerical simulations based on a global random walk algorithm show that the influence of the initial distribution of the cloud of particles is felt over hundreds of dimensionless times. In case of diffusion in random velocity fields with finite correlation range the particles forget the initial positions in the long-time limit and the variance is self-averaging, with clear tendency toward normal diffusion. 000007819 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000007819 542__ $$2Crossref$$i2009-12-28$$uhttp://link.aps.org/licenses/aps-default-license 000007819 588__ $$aDataset connected to Web of Science 000007819 650_7 $$2WoSType$$aJ 000007819 65320 $$2Author$$adiffusion 000007819 65320 $$2Author$$anumerical analysis 000007819 65320 $$2Author$$arandom processes 000007819 65320 $$2Author$$astochastic processes 000007819 7001_ $$0P:(DE-HGF)0$$aVamos, C.$$b1 000007819 7001_ $$0P:(DE-HGF)0$$aRadu, F.A.$$b2 000007819 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ 000007819 7001_ $$0P:(DE-Juel1)VDB77302$$aKnabner, P.$$b4$$uFZJ 000007819 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.80.061134$$bAmerican Physical Society (APS)$$d2009-12-28$$n6$$p061134$$tPhysical Review E$$v80$$x1539-3755$$y2009 000007819 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.80.061134$$gVol. 80, p. 061134-1$$n6$$p061134$$q80<061134-1$$tPhysical review / E$$v80$$x1539-3755$$y2009 000007819 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.80.061134 000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.pdf$$yOpenAccess 000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.gif?subformat=icon$$xicon$$yOpenAccess 000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000007819 909CO $$ooai:juser.fz-juelich.de:7819$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000007819 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000007819 9141_ $$y2009 000007819 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000007819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000007819 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000007819 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1 000007819 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2 000007819 970__ $$aVDB:(DE-Juel1)116563 000007819 9801_ $$aFullTexts 000007819 980__ $$aVDB 000007819 980__ $$aConvertedRecord 000007819 980__ $$ajournal 000007819 980__ $$aI:(DE-Juel1)IBG-3-20101118 000007819 980__ $$aI:(DE-82)080012_20140620 000007819 980__ $$aUNRESTRICTED 000007819 981__ $$aI:(DE-Juel1)IBG-3-20101118 000007819 981__ $$aI:(DE-Juel1)VDB1346 000007819 999C5 $$1C. W. Gardiner$$2Crossref$$oC. W. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences 2009$$tStochastic Methods: A Handbook for the Natural and Social Sciences$$y2009 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.124.983 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.200601 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0741-3335/42/12B/301 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.100601 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.094306 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.031123 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.022101 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-1573(98)00083-0 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01042612 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/40/4/002 000007819 999C5 $$1J. L. Doob$$2Crossref$$oJ. L. Doob Stochastic Processes 1990$$tStochastic Processes$$y1990 000007819 999C5 $$1P. E. Kloeden$$2Crossref$$oP. E. Kloeden Numerical Solutions of Stochastic Differential Equations 1999$$tNumerical Solutions of Stochastic Differential Equations$$y1999 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.64.2503 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(90)90099-N 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/33/10/302 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1239/aap/1011994031 000007819 999C5 $$1N. Suciu$$2Crossref$$oN. Suciu 2008$$y2008 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1214/aoap/1029962805 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-1694(88)90111-4 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01225144 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2005WR004714 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2007WR006740 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/93WR02947 000007819 999C5 $$1N. Suciu$$2Crossref$$oN. Suciu Monte Carlo and Quasi–Monte Carlo Methods 2008$$tMonte Carlo and Quasi–Monte Carlo Methods 2008 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1137/0144027 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2001WR001101 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.3140 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9991(03)00073-1 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2005WR004546 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.40.9427 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2007WR005946 000007819 999C5 $$1A. M. Yaglom$$2Crossref$$oA. M. Yaglom Correlation Theory of Stationary and Related Random Functions 1987$$tCorrelation Theory of Stationary and Related Random Functions$$y1987 000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.2170 000007819 999C5 $$1N. G. van Kampen$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2915501$$y1981