000007819 001__ 7819
000007819 005__ 20230217124329.0
000007819 0247_ $$2DOI$$a10.1103/PhysRevE.80.061134
000007819 0247_ $$2WOS$$aWOS:000273227500045
000007819 0247_ $$2Handle$$a2128/9318
000007819 037__ $$aPreJuSER-7819
000007819 041__ $$aeng
000007819 082__ $$a530
000007819 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000007819 084__ $$2WoS$$aPhysics, Mathematical
000007819 1001_ $$0P:(DE-HGF)0$$aSuciu, N.$$b0
000007819 245__ $$aPersistent memory of diffusing particles
000007819 260__ $$aCollege Park, Md.$$bAPS$$c2009
000007819 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2009-12-28
000007819 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2009-12-01
000007819 300__ $$a061134-1
000007819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000007819 3367_ $$2DataCite$$aOutput Types/Journal article
000007819 3367_ $$00$$2EndNote$$aJournal Article
000007819 3367_ $$2BibTeX$$aARTICLE
000007819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000007819 3367_ $$2DRIVER$$aarticle
000007819 440_0 $$04924$$aPhysical Review E$$v80$$x1539-3755
000007819 500__ $$aRecord converted from VDB: 12.11.2012
000007819 520__ $$aThe variance of the advection-diffusion processes with variable coefficients is exactly decomposed as a sum of dispersion terms and memory terms consisting of correlations between velocity and initial positions. For random initial conditions, the memory terms quantify the departure of the preasymptotic variance from the time-linear diffusive behavior. For deterministic initial conditions, the memory terms account for the memory of the initial positions of the diffusing particles. Numerical simulations based on a global random walk algorithm show that the influence of the initial distribution of the cloud of particles is felt over hundreds of dimensionless times. In case of diffusion in random velocity fields with finite correlation range the particles forget the initial positions in the long-time limit and the variance is self-averaging, with clear tendency toward normal diffusion.
000007819 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000007819 542__ $$2Crossref$$i2009-12-28$$uhttp://link.aps.org/licenses/aps-default-license
000007819 588__ $$aDataset connected to Web of Science
000007819 650_7 $$2WoSType$$aJ
000007819 65320 $$2Author$$adiffusion
000007819 65320 $$2Author$$anumerical analysis
000007819 65320 $$2Author$$arandom processes
000007819 65320 $$2Author$$astochastic processes
000007819 7001_ $$0P:(DE-HGF)0$$aVamos, C.$$b1
000007819 7001_ $$0P:(DE-HGF)0$$aRadu, F.A.$$b2
000007819 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ
000007819 7001_ $$0P:(DE-Juel1)VDB77302$$aKnabner, P.$$b4$$uFZJ
000007819 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.80.061134$$bAmerican Physical Society (APS)$$d2009-12-28$$n6$$p061134$$tPhysical Review E$$v80$$x1539-3755$$y2009
000007819 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.80.061134$$gVol. 80, p. 061134-1$$n6$$p061134$$q80<061134-1$$tPhysical review / E$$v80$$x1539-3755$$y2009
000007819 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.80.061134
000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.pdf$$yOpenAccess
000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.gif?subformat=icon$$xicon$$yOpenAccess
000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000007819 8564_ $$uhttps://juser.fz-juelich.de/record/7819/files/PhysRevE.80.061134.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000007819 909CO $$ooai:juser.fz-juelich.de:7819$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000007819 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000007819 9141_ $$y2009
000007819 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000007819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000007819 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000007819 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000007819 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000007819 970__ $$aVDB:(DE-Juel1)116563
000007819 9801_ $$aFullTexts
000007819 980__ $$aVDB
000007819 980__ $$aConvertedRecord
000007819 980__ $$ajournal
000007819 980__ $$aI:(DE-Juel1)IBG-3-20101118
000007819 980__ $$aI:(DE-82)080012_20140620
000007819 980__ $$aUNRESTRICTED
000007819 981__ $$aI:(DE-Juel1)IBG-3-20101118
000007819 981__ $$aI:(DE-Juel1)VDB1346
000007819 999C5 $$1C. W. Gardiner$$2Crossref$$oC. W. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences 2009$$tStochastic Methods: A Handbook for the Natural and Social Sciences$$y2009
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.124.983
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.200601
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0741-3335/42/12B/301
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.100601
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.094306
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.031123
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.022101
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-1573(98)00083-0
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01042612
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/40/4/002
000007819 999C5 $$1J. L. Doob$$2Crossref$$oJ. L. Doob Stochastic Processes 1990$$tStochastic Processes$$y1990
000007819 999C5 $$1P. E. Kloeden$$2Crossref$$oP. E. Kloeden Numerical Solutions of Stochastic Differential Equations 1999$$tNumerical Solutions of Stochastic Differential Equations$$y1999
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.64.2503
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(90)90099-N
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/33/10/302
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1239/aap/1011994031
000007819 999C5 $$1N. Suciu$$2Crossref$$oN. Suciu 2008$$y2008
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1214/aoap/1029962805
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-1694(88)90111-4
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01225144
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2005WR004714
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2007WR006740
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/93WR02947
000007819 999C5 $$1N. Suciu$$2Crossref$$oN. Suciu Monte Carlo and Quasi–Monte Carlo Methods 2008$$tMonte Carlo and Quasi–Monte Carlo Methods 2008
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1137/0144027
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2001WR001101
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.3140
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9991(03)00073-1
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2005WR004546
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.40.9427
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1029/2007WR005946
000007819 999C5 $$1A. M. Yaglom$$2Crossref$$oA. M. Yaglom Correlation Theory of Stationary and Related Random Functions 1987$$tCorrelation Theory of Stationary and Related Random Functions$$y1987
000007819 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.2170
000007819 999C5 $$1N. G. van Kampen$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2915501$$y1981