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The variance of the advection-diffusion processes with variable coefficients is exactly decomposed as a sum

of dispersion terms and memory terms consisting of correlations between velocity and initial positions. For

random initial conditions, the memory terms quantify the departure of the preasymptotic variance from the

time-linear diffusive behavior. For deterministic initial conditions, the memory terms account for the memory

of the initial positions of the diffusing particles. Numerical simulations based on a global random walk

algorithm show that the influence of the initial distribution of the cloud of particles is felt over hundreds of

dimensionless times. In case of diffusion in random velocity fields with finite correlation range the particles

forget the initial positions in the long-time limit and the variance is self-averaging, with clear tendency toward

normal diffusion.
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I. INTRODUCTION

A stochastic process has diffusive behavior when its vari-

ance is a linear-time function. The simplest example is the

advection-diffusion process with constant coefficients de-

scribed by a Gaussian normalized concentration �one-time

probability density� c�x , t�= �4�Dt�−1/2 exp�−�x−Vt�2
/4Dt�.

The mean ��t� and the variance s�t� are both linear-time

functions,

��t� =� xc�x,t�dx = Vt ,

s�t� =� �x − ��t��2c�x,t�dx = 2Dt ,

and their time derivatives give the constant velocity and dif-

fusion coefficients of the process �1�,

V =
d

dt
��t�, D =

d

2dt
s�t� . �1�

In this case, the diffusion coefficient D describes both the

shape of the Gaussian distribution c�x , t� and the width of the

diffusion front s�t�. For transport in systems with space-time-

variable properties, the mean and the variance are no longer

related with the variable velocity and diffusion coefficients

by the simple relations �Eq. �1��.
In Sec. II we derive general relations between coefficients

and the covariance of the advection-diffusion process. These

relations show that the variable diffusion coefficients con-

tribute to the covariance of the process by the time integral

of their expected values. The variability of the velocity in-

stead yields two different contributions: dispersion terms, ex-

pressed by Taylor-Kubo relations as time integrals of the

Lagrangian velocity correlation, and memory terms, account-
ing for correlations between initial positions of the diffusing
particles and their Lagrangian velocity. In Sec. III we prove
that the extinction of the memory terms in the long-time
limit is a necessary condition for the occurrence of the nor-
mal diffusion.

Statistical physics approaches for spatially homogeneous
systems �2,3� or for transport in inhomogeneous and rapidly
fluctuating velocity fields, as in plasma physics �4�, are con-
cerned with memory effects which characterize the departure
of the process from diffusive behavior. Such effects are re-
lated to the occurrence of the anomalous transport �4,5� and
are usually described by nonlocal equations, containing
memory kernels which govern the velocity autocorrelation
function or the ensemble average of a transported scalar
�6–9�. Our approach to investigate memory effects, though
related to those cited above, is somehow simpler and
straightforward. Instead of describing memory effects by
convolution memory kernels �2,7,8�, we investigate the time
behavior of the memory terms. The latter can be expressed in
general for either continuous time-space or discrete transport
processes as correlations between displacements of the dif-
fusing particles and their initial positions. Such correlations

relate the linear-time diffusive behavior of the variance to the

lose of memory of the past itinerary of the particles. This

condition of diffusive behavior generalizes to the case of

variable coefficients the independence of increments of the

Wiener process �Sec. III�.
Our approach allows one to treat in a unitary way memory

effects manifested by departure from normal diffusive behav-

ior and the memory of the initial positions of the particles. In

Sec. IV we show, via a numerical experiment, that memory

terms also quantify the persistent influence of the determin-

istic initial conditions on the variance of the transport pro-

cess and its departure from model statistical descriptions by

ensemble averages. In particular, it is shown that the self-

averaging behavior of the effective coefficients of diffusion

in random velocity fields �10,11� is clearly related to the*suciu@am.uni-erlangen.de
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destruction of the memory terms. Section V summarizes the

results and outlines directions for further work.

II. DISPERSION AND MEMORY TERMS

We consider, for the beginning, the continuous diffusion

process with space-time-variable diffusion coefficients

Dij�x , t� and velocity components Vi�x , t�, i, j=1,2 ,3. The

density of the transition probability g�x , t �x0 , t0� is the solu-

tion of the Fokker-Planck equation

�tg + �xi
�Vig� = �xi

�xj
�Dijg� �2�

for the initial condition g�x , t0 �x0 , t0�=��x−x0�. The time

evolution of the normalized concentration is given by

c�x,t� =� g�x,t�x0,t0�c�x0,t0�dx0, �3�

where c�x0 , t0� is the initial concentration and the integral

extends over the entire space.

A diffusion process is defined by the following conditions

uniformly satisfied in x and t for all ��0 �1,12,13�:

lim
�t→0

1

�t
�

�x�−x���

g�x�,t + �t�x,t�dx� = 0, �4�

Vi�x,t� = lim
�t→0

1

�t
� �

�x�−x�	�

�xi� − xi�g�x�,t + �t�x,t�dx�,

�5�

Dij�x,t� =
1

2
lim

�t→0

1

�t
� �

�x�−x�	�

�xi� − xi��x j� − x j�

�g�x�,t + �t�x,t�dx�. �6�

Condition �4� ensures the continuity with probability 1 for

the trajectories of the diffusion process. The velocity compo-

nents Vi and the diffusion coefficients Dij of the Fokker-

Planck equation �Eq. �2�� are defined in Eqs. �5� and �6� by

means of the first two local moments �computed on spheres

of radius �� of the transition probability of the process start-

ing at �x , t�. Since the mean and the variance in Eq. �1� are

integrals over the entire space, it follows that for processes

with constant coefficients two more conditions are fulfilled

for every ��0,

lim
�t→0

1

�t
�

�x�−x���

xi�g�x�,t + �t�x,t�dx� = 0, �7�

lim
�t→0

1

�t
�

�x�−x���

xi�x j�g�x�,t + �t�x,t�dx� = 0. �8�

Conditions �7� and �8� correspond to the physically reason-

able assumption that the first two moments are finite at finite

times �12�. In the following we restrict the solutions of the

Fokker-Planck equation �Eq. �2�� to the class of transition

probabilities obeying Eqs. �7� and �8�. In this case, the inte-

grals in the definitions �Eqs. �5� and �6�� of the coefficients

can be extended over the entire space �12�.

Using the definitions �Eqs. �5� and �6�� of the coefficients

and the constraints on the transition probability �Eqs. �4�, �7�,
and �8��, we computed in Appendix A the components of the

mean �i and of the covariance sij, which have the following

explicit dependence on the coefficients of the Fokker-Planck

equation �Eq. �2��:

�i�t,t0� =� xic�x,t�dx = �i�t0� + �
t0

t

V̄i�t��dt�, �9�

sij�t,t0� =� �xi − �i�t���x j − � j�t��c�x,t�dx

= sij�t0� + 2�
t0

t

dt�� Dij�x,t��c�x,t��dx + su,ij�t,t0�

+ mij�t,t0� , �10�

su,ij�t,t0� = �
t0

t

dt��
t0

t�

dt�� c�x0,t0�dx0

�� � �ui�x�,t��u j�x,t�� + u j�x�,t��ui�x,t���

� g�x,t��x�,t��g�x�,t��x0,t0�dxdx�, �11�

mij�t,t0� = �
t0

t

dt�� c�x0,t0�dx0� ��x0j − � j�t0��ui�x,t��

+ �x0i − �i�t0��u j�x,t���g�x,t��x0,t0�dx , �12�

where

V̄i�t� =� Vi�x,t�c�x,t�dx �13�

is the mean velocity and ui�x , t�=Vi�x , t�− V̄i�t� is the veloc-

ity fluctuation.

The physical meaning of the contributions �Eqs. �11� and

�12�� to the covariance �Eq. �10�� becomes clearer when we

express these terms within the Lagrangian framework as av-

erages over the trajectories of the diffusing particles �9�. To

this end, we note that for a given diffusion process with

sufficiently smooth coefficients �Eqs. �5� and �6��, it is al-

ways possible to construct weak solutions of the associated

Itô equation with transition probability densities described by

the Fokker-Planck equation �Eq. �2�� �12,13�. Let us consider

a diffusion process �Xi�t� , t� t0 , i=1,2 ,3� with stationary

velocity V�x� and isotropic constant diffusion coefficients

Dij =D and the Itô equation

Xi�t� = X0i + �
t0

t

Vi�X�t���dt� + Wi�t − t0� , �14�

where Wi�t− t0� is a Brownian motion modeled as a Wiener

process with mean zero and variance 2D�t− t0� �13�. The Itô

equation, which when written in differential form dXi�t�
=Vi�X�t��dt+dWi�t� is also referred to as Langevin equation,

is often used as model for the movement of diffusing par-

ticles in physical systems �1,14–16�.
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In the following we denote averages over trajectories of

particles starting at given initial positions and averages with

respect to initial distributions of particles by angular brackets

with subscripts D and X0, respectively, and we pass to a

Lagrangian description using the expressions of the probabil-

ity densities derived in Appendix B. From Eq. �B1� it be-

comes evident that the mean velocity �Eq. �13�� is the aver-

age of the velocity field viewed by particles moving on

trajectories, V̄i�t�= 	Vi�Xi�t��
DX0
, i.e., it is the average of the

Lagrangian velocity �17�. In the same way, using Eq. �B2�,
the integrands in Eqs. �11� and �12� are expressed in terms of

autocorrelation and correlation with initial positions of the

Lagrangian velocity. The diagonal components of the cova-

riance �Eq. �10�� become

sii�t,t0� = sii�t0� + 2D�t − t0�

+ 2�
t0

t

dt��
t0

t�

	ui�X�t��,t��ui�X�t��,t��
DX0
dt�

+ 2�
t0

t

	�Xi�t0� − 	Xi�t0�
DX0
�ui�X�t���
DX0

dt�.

�15�

The relation �Eq. �15�� has also been derived directly from

Eq. �14� by using the Itô formalism �18�.
As follows from the comparison with the third term in Eq.

�15�, the contribution su,ij �Eq. �11�� to the covariance �Eq.

�10�� is of the Taylor-Kubo type �9,19�, i.e., given by time

integrals of the Lagrangian velocity correlation. The novelty

of this result is that Eq. �11� is a Taylor-Kubo relation valid

for a deterministic velocity field or for a fixed realization of

a random field. The contribution �Eq. �11�� of the variable

velocity field is an equivalent expression of the usual term,

given by a time integral of the correlation position velocity

�see Eq. �A3��, derived from computations of the spatial mo-

ments of the concentration field �20� or within the Lagrang-

ian approach used in this paper �e.g., �21��. Note that in

previous works Taylor-Kubo contributions to the covariance

of the advection-diffusion process or to the effective diffu-

sion coefficients were obtained after averaging over en-

sembles of velocity realizations �9,19,22,24� or as first-order

approximations in velocity variance �20,21,23,24�.
The last term of Eq. �15� shows that Eq. �12� is the cor-

relation of the Lagrangian velocity with the initial position

cumulated in time. Hence mii describes the memory of the

diffusing particles. Further, using Eq. �14�, we rewrite Eq.

�15� as

sii�t,t0� = sii�t0� + s̃ii�t,t0� + mii�t,t0� , �16�

where the sum of second and third terms of Eq. �15� is ex-

pressed in terms of displacements X̃i�t�=Xi�t�−Xi�t0�,

s̃ii�t,t0� = Š�X̃i�t� − 	X̃i�t�
DX0
�2‹DX0

. �17�

Hence, Eq. �17� is the dispersion of the random variable X̃i.

The memory terms mii can be equivalently expressed as cor-

relations between displacements and initial positions of par-

ticles,

mii�t,t0� = 2Š�Xi�t0� − 	Xi�t0�
DX0
��X̃i�t� − 	X̃i�t�
DX0

�‹DX0
.

�18�

Thus the variance �Eq. �16�� consists of a sum of two disper-

sion terms, sii�t0�+ s̃ii�t , t0�, and a memory term, mii�t , t0�.
Though Eqs. �16�–�18� were introduced here by using the

equivalence of the Fokker-Plank and Itô descriptions for dif-

fusion processes, it is noteworthy to mention that they are

general relations that hold true for any continuous or discrete

time-space process �25�. In fact, Eq. �16� is strictly equiva-

lent to the usual definition of the variance, sii=Š�Xi

− 	Xi
DX0
�2‹DX0

. For deterministic processes, Eq. �16� without

averages with subscript D is a decomposition of the moment

of inertia sii of the cloud of particles moving on known tra-

jectories Xi�t�, for instance, the trajectories of the dynamical

system generated by a nonsingular velocity field �26�.

III. MEMORY TERMS FOR RANDOM INITIAL

CONDITIONS

Let us consider a process X�t�, starting at t0 from X�t0�
=0. Since sii�t0� and mii�t , t0� �Eq. �18�� vanish, Eq. �16�
reduces to sii�t , t0�= s̃ii�t , t0�, which is the dispersion of the

random variable X̃i�t�=Xi�t�. If one observes the same pro-

cess from time 
� t0 on, then the initial positions are random

variables Xi�
�, outcome of the evolution of the process for

t	
. In these conditions, the dispersion of the total displace-

ments Xi�t� can be written according to Eq. �16� as

s̃ii�t,t0� = s̃ii�
,t0� + s̃ii�t,
� + mii�t,
� , �19�

where the terms s̃ii are dispersions given by Eq. �17� for X̃i

equal to Xi�t�, Xi�
�, and Xi�t�−Xi�
�, respectively, and the

memory term describes the correlation of the successive dis-

placements,

mii�t,
� = 2Š�X̃i�
� − 	X̃i
DX0
�
���X̃i�t� − 	X̃i
DX0

�t��‹DX0
.

�20�

According to Eq. �19�, cancellation of memory terms

mii�t ,
� is equivalent to additivity of the dispersion s̃ii with

respect to nonoverlapping time intervals, s̃ii�t , t0�= s̃ii�
 , t0�
+ s̃ii�t ,
�. In particular, if the dispersion of the particle dis-

placements is a linear function of time, then the memory

terms necessarily vanish. This is obviously the case of the

Wiener process starting at �0,0�, for which the memory term

�Eq. �20�� vanishes because the increments of the process are

independent, 	�Wi�
�−Wi�0���Wi�t�−Wi�
��
D=0.

A. Discrete diffusion processes with finite memory

The following example illustrates the case of processes

with finite memory which after a transient time reaches a

diffusive regime characterized by linearity of the dispersion

with respect to time.

The trajectory of the Wiener process can be simulated

numerically by summing up Gaussian random variables, Z

= �Zn ,n=0, �1, �2, . . .�, of mean zero and unit variance.

This is the particular case �=1 of the more general algo-
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rithm for autoregressive processes of order 1 generated by

the recursive relation Xn=�Xn−1+Zn. For 0	�	1, the dis-

crete process X= �Xn� is stationary, with mean zero, constant

variance sX=1 / �1−�2�, and autocovariance 	XnXn+r
=sX�r.

Finite sequences are also stationary, with mean zero and with

the same covariance, if the first term X0 is chosen as a ran-

dom variable with the same variance sX as the infinite autore-

gressive processes �27�. Summing up realizations of Xn is a

simple way to obtain diffusion processes with memory. The

process �Yn ,n�0� starting from Y0=0 generated by

Yn = Yn−1 + Xn = �
s=1

n

Xs

has the expectation 	Yn
=0 and, because �Xn� is stationary,

the variance sYn
= 	Yn

2
 can be expressed by a discrete Taylor-

Kubo relation,

sYn
= �

s=1

n

	Xs
2
 + 2�

r=1

n−1

�
s=1

n−r

	XsXs+r
 = nsX + 2sX�
r=1

n−1

�n − r��r.

�21�

Einstein formula gives a finite diffusion coefficient �28�,

D = lim
n→


sYn

2n
=

sX

2
�1 + 2

�

1 − �

 . �22�

The discrete form of Eq. �19� is s̃Yn
= s̃Yl

+ s̃Yn,l
+mYn,l

,

where s̃Yn
=sYn

whereas s̃Yl
and s̃Yn,l

are expressed analogous

to Eq. �21� after replacing the upper summation limit by l

and the lower limit by l+1, respectively. It is ready to check

that, for fixed l, limn→
�s̃Yl
+ s̃Yn,l

� / �2n�=D; that is, the

memory term mYn,l
has no contribution to the diffusion coef-

ficient �Eq. �22��. This can also be checked directly by com-

puting the memory term

mYn,l
= 2	�Y l − Y0��Yn − Y l�
 = 2lsX�

r=l

n−1

�r = 2lsX

1 − �n−l

1 − �
�l.

�23�

Since the limit n→
 of Eq. �23� is a constant, 2lsX�l
/

�1−��, the term mYn,l
/ �2n� has no contribution to D. More-

over, the limit n, l→
, n� l of Eq. �23� vanishes, hence the

increments of the diffusion process with memory �Yn ,n

�0� become independent in the long-time limit.

B. Diffusion in random velocity fields

If the velocity is a realization of a random space function,

a key issue is whether the average over the ensemble of

velocity realizations of the diffusion process described by

Eqs. �2� and �14� behaves diffusively at some large time

scale �19,22,29�. The relevant variance is now Š�Xi

− 	Xi
DX0V�2‹DX0V, which, as follows from Eq. �B1�, is the

second, central, spatial moment of the ensemble average

concentration 	c�x , t�
V= 	��x−X�t��
DX0V. �Here and in the

following, angular brackets with subscript V denote en-

semble averages.� The identity �Eq. �19�� can be used in

investigations on the second moment of the mean concentra-

tion when averages 	¯ 
DX0
are replaced by 	¯ 
DX0V. Fur-

ther, let us consider the Itô process,

Xi�t� = Xi�
� + �



t

Vi�X�t���dt� + Wi�t − 
� , �24�

with the same coefficients and with initial position given by

the solution Xi�
� of the Eq. �14� at the moment 
. Assuming

that the Itô equation has unique solutions, from Eqs. �14� and

�24� one obtains the following explicit dependence of the

memory term �Eq. �20�� on the Lagrangian correlation func-

tion CL:

mii�t,
� = 2�



t �
0




Cii
L�t�,t��dt�dt�, �25�

where

Cii
L�t�,t�� = 	Vi�X�t��,t��Vi�X�t��,t��
DX0V

− 	Vi�X�t��,t��
DX0V	Vi�X�t��,t��
DX0V. �26�

While the question whether the Lagrangian correlation in-

herits properties of the Eulerian correlation of the random

space function V�x� has no simple answer and requires prov-

ing specific limit theorems �19,22�, some insight can how-

ever be provided by formal asymptotic expansions �29�. The

simplest approach is that considering statistically homoge-

neous velocity fields and first-order approximations of the

transport equations. For advection dominated transport prob-

lems, a consistent first-order approximation to the solutions

of Itô equation �Eq. �14�� with initial condition X�t0�=0 is

obtained by the first iteration about the unperturbed solution

Xi
�0��t�=�i,1Ut, where U is the constant mean of the velocity

field 	V�x�
V, assumed to be oriented along the one axis of

the coordinate system: Xi
�1��t�=�t0

t Vi�Ut��dt�+Wi�t− t0�
�18,23,24�. In this approximation the arguments of Vi in Eq.

�26� have to be replaced by Ut� and Ut� and the Lagrangian

correlation will be Cii
L�t� , t��=Cii

E�U�t�− t���, where Cii
E�r�

= 	Vi�x�Vi�x+r�
V− 	Vi�x�
V	Vi�x+r�
V is the homogeneous

Eulerian correlation. The first-order approximation of the

dispersion s̃ii�t , t0�, associated to the ensemble average con-

centration, becomes

s̃ii�t,t0� = 2Dt + 2�
t0

t

dt��
t0

t�

Cii
E�U�t� − t���dt�. �27�

If the Eulerian field has finite correlation lengths �ii

=1 / �Cii
E�0���Cii

E�r�dr, then the first-order approximation of

the Lagrangian field also has finite correlation times �ii /U

�24�. Heuristically, because the velocity field has finite cor-

relation scale, one assumes that the displacements over times

larger than the correlation time will be uncorrelated and by

the central limit theorem the process of diffusion in random

fields behaves like a Gaussian diffusion �e.g., the macrodis-

persion model for transport of solutes in geological porous

formations �30��. Nevertheless, rigorous proofs of this state-

ment are only obtained under stronger assumptions on the

velocity field �19,22�.
Following a common approach in physics literature

�14,31�, the behavior of the process at large distances can be
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described by considering white noise correlations Cii
E

=�ii��r�. Then, the memory term �Eq. �25�� can be com-

puted exactly and yields mii�t ,
�=0. Similarly, from Eq. �27�
one obtains the linear dispersion s̃ii�t , t0�=2�D+�ii /U��t
− t0�. Thus, for white noise correlations the memory terms

vanish at all times, the displacement increments from Eq.

�20� are uncorrelated, like in the case of a Gaussian diffu-

sion, and the dispersion �Eq. �19�� is a linear-time function.

In case of finite correlation lengths, as for instance the

often used isotropic exponential Cii
L =Cii

E�0�e−�t�−t��U/� and

Gaussian Cii
L =Cii

E�0�e−�t�− t��2
U/� correlations, information on

the asymptotic behavior can be obtained by considering the

long-time limit of the time derivatives of the dispersion and

memory terms. From Eq. �25� one obtains

lim
t→


d

dt
mii�t,
� = 2 lim

t→

�

0




Cii
L�t − t��dt� = 0

because for �t− t��U�� the Lagrangian correlation CL will

be very close to zero. The derivative of the dispersion �Eq.

�27�� instead approaches a finite limit and defines upscaled

diffusion coefficients

Dii
� =

1

2
lim
t→


d

dt
s̃ii�t,t0� = D + lim

t→

�

t0

t

Cii
E�U�t − t���dt�

= D +
�CE�0�

U
. �28�

Since, according to Eq. �28�, the dispersion s̃ii has a long-

time-linear behavior, Eq. �19� implies the cancellation of the

memory terms mii. It follows that for sufficiently fast decay

of the Lagrangian correlations, the diffusing particles forget

the memory and behave diffusively like Brownian particles.

A special situation, for which no approximations are re-

quired, is that of a system of particles undergoing diffusion

in a stratified velocity field. If the advective velocities of the

particles have only longitudinal components which depend

randomly on the transverse coordinate alone and a white

noise correlation, then the Lagrangian correlation �Eq. �26��
can be computed exactly: C11

L =C11
E �0�e�t�− t��−1/2

/ �2��D�
�14,31�. Since the integral of C11

L diverges, the longitudinal

Lagrangian velocity has an infinite correlation time and the

decorrelation of the displacements from Eq. �20� cannot be

expected. The longitudinal memory term computed from Eq.

�25�,

m11�t,
� =
2C11

E �0�

3��D
��t − t0�3/2 − �
 − t0�3/2 − �t − 
�3/2� ,

�29�

expresses, according to Eq. �19�, the nonlinearity of the dis-

persion terms with a t3/2 time behavior �obtained explicitly

by replacing C11
L in Eq. �27��, m11�t ,
�= s̃ii�t , t0�− �s̃ii�
 , t0�

+ s̃ii�t ,
��. The memory term �Eq. �29�� is nonvanishing at all

times t�
 and tends to infinity for t→
. This shows that,

according to Eq. �20�, the particles undergoing diffusion in

perfectly stratified velocity fields never forget the initial ran-

dom position X1�
�. Or equivalently, according to Eq. �25�,
the particles always remember the past Lagrangian velocity

they had before the initial observation time 
.

IV. MEMORY EFFECTS FOR DETERMINISTIC INITIAL

CONDITIONS

Now, we consider the memory terms �Eq. �18�� for initial

positions Xi�t0� that are no longer the outcome of the evolu-

tion of the same process but arbitrary deterministic quanti-

ties. Since in this case the correlation of increments in Eq.

�18� cannot be expressed by correlations of the Lagrangian

velocity, the issue was investigated through numerical ex-

periments.

Simulations of diffusion of large collections of particles in

realizations of a random velocity field were carried out with

the global random walk �GRW� algorithm �32�. Though

equivalent with a superposition of many particle tracking

procedures �Euler schemes for the Itô equation �Eq. �14���,
GRW is rather a cellular automaton: at given time step all the

particles located at grid points are simultaneously advected

with the local velocity and spread according to the random

walk rule. This allows global simulations of diffusion for

huge numbers of particles which render the statistical fluc-

tuations of the estimated expectations 	¯ 
DX0
�e.g., concen-

tration moments� smaller than the limit of double precision

of the computing platform. For the simulations presented in

the following this precision was ensured by using 1010 par-

ticles.

We considered a hydrological problem of contaminant

transport through an isotropic two-dimensional aquifer sys-

tem, characterized by logarithmic-normal distributed hydrau-

lic conductivity K with small variance �ln K
2 =0.1 and expo-

nentially decaying isotropic correlation with correlation

length �=1 m. Darcy velocity fields were approximated nu-

merically by Gaussian fields �11,23�. For fixed mean flow

velocity U=1 m /d and isotropic local dispersion with con-

stant coefficient D=0.01 m2
/d, the Péclet number got a

typical value Pe=U� /D=100. Details on algorithm and nu-

merical setup can be found in Ref. �33�.

A. Memory terms for fixed velocity realizations

To estimate memory terms �Eq. �18�� for a single realiza-

tion we considered a number of 121 initial positions X�t0�
uniformly distributed in rectangular domains with dimen-

sions L1��L2�. By releasing 1010 particles from each initial

position, we performed GRW simulations to compute the

displacements along the trajectories of the diffusion pro-

cesses starting from these positions. Finally, the correlations

between displacements and initial positions from Eq. �18�
were computed by averages over the initial positions X�t0�.
The results presented in Fig. 1 show that at early times the

memory terms mii increase with the dimension of the source

in the i direction and are mainly significant for asymmetric

sources.

The overall decay of mii in all cases indicates that the

averages 	ui�X�t��
D of the fluctuations of the Lagrangian

velocity averaged over realizations of the diffusion process

for fixed initial positions Xi�t0� become independent of Xi�t0�
�see Eq. �15��. This can be the case if 	ui�X�t��
D tends to the
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constant ensemble averages of the Eulerian field. Although

such self-averaging properties can only be proved in particu-

lar cases �e.g., �10��, they are often found in numerical mod-

eling of transport in random fields with finite correlation

scales �11,25�. In our case, the self-averaging is indicated by

the decay in time of the fluctuations of 	ui�X�t��
D and the

good agreement between the space-averaged Lagrangian ve-

locity and the ensemble mean Eulerian velocity shown in

Fig. 2. The two panels of Fig. 2 also show that the shape of

the initial distribution �longitudinal and transverse slabs of

thickness �� has little influence on the self-averaging behav-

ior, provided that the support of the initial concentration ex-

tends over at least one correlation length in all directions.

Intriguingly, in the case of diffusion in perfectly stratified

flows with infinite correlation range and infinitely persistent

memory of the random initial conditions, analyzed in Sec.

III B, the dependence on deterministic initial conditions in-

duces only transitory effects. The transverse dispersion is

that of a memory-free Brownian motion with m22=0 and,

because the longitudinal velocity does not depend on the

longitudinal coordinates, m11 �Eq. �18�� identically vanishes

at all times. Equation �12� shows that the off-diagonal term

m21, corresponding to the correlation between longitudinal

velocities and transverse initial positions of particles,

ŠX2�t0�	u1�X2�t��
D‹DX0
, is nonvanishing at finite times. How-

ever, since u1 has a finite correlation length in the transverse

direction it has a self-averaging behavior similar to that in

Fig. 1 and m21 vanishes in the long-time limit.

B. Persistent memory of the initial conditions

When diffusion takes place in random environments, the

ensemble averaged variance of the process and the second

moment of the ensemble averaged concentration have differ-

ent behaviors and describe different features of the physical

process �14,15,34�. Their difference is the variance of the

center of mass, which is also strongly influenced by the ini-

tial conditions of the transport problem �25,33�.
To account for the randomness of the center of mass, we

define dispersion terms

�ii = Š�Xi − 	Xi
DX0V�2‹DX0
, �30�

rii = �	Xi
DX0
− 	Xi
DX0V�2 �31�

and we write the variance �Eq. �16�� in the equivalent form

sii = �ii − rii. �32�

For processes governed by the Fokker-Planck equation

�Eq. �2�� and Itô equation �Eq. �14��, Eq. �32� is obtained by

replacing in the variance �Eq. �10�� the center of mass for a

single realization 	Xi
DX0
=�i�t , t0�=�i�t0�+�t0

t�V̄i�t��dt� with

its ensemble average �i�t0�+�t0

t�	V̄ j�t�
Vdt� and by subtracting

the correction �Eq. �31��. The latter is expressed by using Eq.

�9� as
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rii�t,t0� = �
t0

t

dt�� ûi�x,t��c�x,t��dx

� �
t0

t

dt�� ûi�x�,t��c�x�,t��dx�,

where the velocity fluctuation is now defined with respect to

the ensemble averaged velocity, ûi�x , t�=Vi�x , t�− 	V̄i�t�
V.

Expression �10� can thus be rewritten in the equivalent form,

sii�t,t0� = sii�t0� + 2D�t − t0� + sû,ii�t,t0� + mii�t,t0� − rii�t,t0� ,

�33�

where the memory term mii�t , t0� is given by Eq. �12� for i

= j and the contribution of the velocity fluctuations ûi has a

form similar to Eq. �11�,

sû,ii�t,t0� = �
t0

t

dt��
t0

t�

dt�� c�x0,t0�dx0

�� � ûi�x�,t��ûi�x,t��g�x,t�x�,t��

� g�x�,t��x0,t0�dxdx�. �34�

The ensemble average of the velocity correlation under the

time integrals in Eq. �34� is the mean Lagrangian correlation

�Eq. �26�� analyzed through first-order approximations in

Sec. III B.

The ensemble average of Eq. �32� is a well known iden-

tity �15,20,33,34� which relates the expected second moment

Sii= 	sii
V to the second moment of the mean concentration

�ii= 	�ii
V and the variance of the center of mass Rii= 	rii
V,

Sii = �ii − Rii. �35�

Assuming all necessary joint measurability conditions

which allow permutations of averages �17� leads to

�ii = sii�t0� + 	Xii
X0
+ Mii + Qii, �36�

where Xii=Š�X̃i− 	X̃i
DV�2‹DV is the one-particle dispersion

�defined by averaging with respect to D and V for a fixed

initial position�, Mii= 	mii
V is the mean memory term, and

Qii=Š�	X̃i
DV− 	X̃i
DX0V�2‹X0
is the spatial variance of the one-

particle center of mass 	X̃i
DV �computed by averages over

initial positions� �35�.
The terms of Eq. �36� depend, via the trajectory �Eq.

�14��, on the Lagrangian velocity field. If the Lagrangian

field is statistically homogeneous the one-particle center of

mass 	X̃i
DV and dispersion Xii are independent of X0 �17,24�;
hence they are memory-free quantities. Then Mii and Qii

vanish and Eq. �36� takes on the simpler form,

�ii = sii�t0� + Xii. �37�

Assuming Lagrangian homogeneity leads, according to Eqs.

�33� and �35�, to �ii= 	�ii
V=sii�t0�+2D�t− t0�+ 	sû,ii
V. Then,

the upscaled diffusion coefficients describing the behavior of

the ensemble mean concentration, Dii
� =limt→


1

2t
�ii

=
1

2
limt→


d

dt
�ii, are the sum between the local coefficient D

and the long-time limit of the half derivative of the ensemble

averages 	sû,ii
V of the velocity fluctuation contributions �Eq.

�34��. Their first-order approximations �Eq. �28�� are related

to the statistics of the hydraulic conductivity field by

Dii
� = D + �1i�ln K

2
U� , �38�

which for the parameters of the numerical experiment pre-

sented here take the values D11
� =0.11 m2

/d and D22
�

=0.01 m2
/d �33�.

The dispersion terms �Eqs. �30�–�32�� were estimated

from GRW simulations by using for every velocity realiza-

tion 1010 particles that were initially uniformly distributed in

rectangular domains L1��L2� or released from the origin of

the computational grid. For each initial condition, 1024 real-

izations of the velocity field were used to asses ensemble

averages 	¯ 
V �expectations and standard deviations of vari-

ous concentration moments�. Preliminary tests and compari-

son with reference simulations using an algorithm free of

overshooting errors �23� showed that the overall precision of

this Monte Carlo approach was of the order of the local

dispersion 2Dt at early times and smaller than Dt after simu-

lation times of about 30 dimensionless times Ut /�.

Figure 3 shows that for large dimensions of the support of

the initial concentration �the source of particles� Sii��ii.

Hence, the variance of the center of mass Rii�0, a property

which is quite insensitive to the shape and orientation of the

source. This is a somewhat expected result because for trans-

port in velocity fields with finite correlation range, which are

ergodic �36�, the center of mass for point sources 	Xi
D is

ergodic too, i.e., the space average approximates the en-

semble average, 	Xi
DX0
�	Xi
DV, and according to Eq. �31�

Rii= 	rii
DV�0.

Another information provided by Fig. 3 is that for large

slab sources transverse to the i direction, for which the

memory terms �Eq. �18�� are small �Fig. 1�, �ii−sii�t0� is

independent of the source dimension. Therefore, we approxi-

mated the memory-free one-particle dispersion Xii by using

in Eq. �37� the second moment of the mean concentration �ii

estimated from GRW simulations done for the largest slab

source �L=100� oriented perpendicular to the i axis. Since it

has been found that the term Qii is much smaller than the

local dispersion 2Dt �35�, the irregular behavior at early

times of �ii for different initial conditions can be attributed,

according to Eq. �36�, to the mean memory terms Mii=�ii

−sii�t0�−Xii.

The mean memory terms are a consequence of the statis-

tical inhomogeneity of the Lagrangian velocity field, for

which the ensemble average of Eq. �12� is nonvanishing.

Such memory effects on the ensemble averaged dispersion

can be tracked back to the lack of smoothness of the velocity

samples of the random field with exponential correlation

used in simulations �24�. The issue is somewhat similar to

that of memory-induced oscillations of the diffusion coeffi-

cient observed in the case of charged particles driven by a

uniform magnetic field and a stationary Gaussian stochastic

force with exponential time correlation �8�, as well as in the

case of particles driven by an anticorrelated autoregressive

noise �28�. However, in the two latter examples the memory

mechanism is no longer the dependence of the Lagrangian

statistics on deterministic initial conditions but an intrinsic
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interdependence of the increments of the process due to the

colored noise �28�.
The smallness of the standard deviation SD��ii� for large

slab sources perpendicular to the i direction shown in Fig. 4

indicates that �ii−sii�t0� also approximates Xii for such initial

conditions. The large values of SD��ii� for large slab sources

parallel to the i direction are due, according to Eq. �33�, to

the large memory terms mii which, as shown by Eq. �18�,
increase with the source dimension. We have seen that for

large sources, irrespective of their shape and orientation, rii

�0. Thus, according to Eq. �32� �ii�sii and we can adopt

the following estimation of the memory terms,

mii�t − t0� = sii�t − t0� − sii�t0� − Xii�t − t0� . �39�

As seen in Fig. 3, the long-time limit of the effective

diffusion coefficients, defined by the half slope of the mean

dispersion �Sii−sii�t0�� / �2�t− t0��, approaches the upscaled

coefficients �Eq. �38��. The relevance of the upscaled coeffi-

cients for single realizations of the transport is an ergodicity

issue. The overall trend of fluctuations shown in Fig. 4 indi-

cates that single-realization dispersion coefficients are self-

averaging. Together, the results from Figs. 3 and 4 indicate

an ergodic behavior in the sense that the mean square dis-

tance between single-realization and upscaled coefficients

decreases in time �33�.
Another ergodic behavior of interest in practical applica-

tions is that with respect to the memory-free dispersion Xii,

which is often available from estimations of the dispersion

terms �Eq. �34�� for given correlations of the Eulerian veloc-
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ity field �11,23�. Using Eq. �39�, we estimated the mean and

the standard deviations of the largest memory terms mii cor-

responding to sources with the largest extension in the i di-

rection. The results presented in Fig. 5 show that the mean

memory terms are negligible small as compared to the stan-

dard deviations. So, practically the mean square distance be-

tween sii and Xii is given by SD�mii�. In Fig. 5 we also

represented the memory terms for pure advective transport

with Pe=
, simulated by dropping the diffusion step in the

GRW algorithm. It can be seen that the standard deviations

are almost the same as in the case with Pe=100. According

to Eq. �39�, the extinction of the memory terms is equivalent

to the self-averaging of the single-realization variance sii and

of the effective diffusion coefficients. At finite times,

memory effects manifest mainly through deviations of

single-realization dispersion from the ideal model-behavior

described by the memory-free dispersion Xii. Such effects

strongly depend on the shape, the orientation, and the spatial

extension of the source of particles.

V. CONCLUSIONS

We decomposed the variance of the transport processes in

dispersion and memory terms and for continuous diffusion

process we derived explicit relations between these terms

and the coefficients of the Fokker-Planck equation. Never-

theless, this decomposition is a general property of the vari-

ance and allows investigations on discrete processes as well.

The memory terms govern the preasymptotic behavior of

the transport process. We have shown that normal diffusion

occurs only if the memory terms vanish. This happens when

the diffusing particles forget their past itinerary. For diffusion

in statistically homogeneous velocity fields with finite corre-

lation lengths, we found that for finite correlation times of

the Lagrangian velocity or convergent Kubo formula, the

particles lose the memory in the long-time limit and normal

diffusion occurs. We found a similar behavior for a discrete

diffusion process with finite memory generated by autore-

gressive noise.

Memory terms also quantify the persistent influence of the

deterministic initial conditions on the behavior of the trans-

port process. Large deterministic initial distributions of the

cloud of particles cause large memory terms which prevent

the use of the one-particle dispersion as a model for the

preasymptotic transport regime. Numerical simulations of
diffusion in space random velocity fields with finite correla-
tion range indicated the extinction of the memory terms after
considerably large times, corresponding to hundreds of cor-
relation scales, as well as the self-averaging behavior of the
variance and its tendency toward normal diffusion.

Thus, the issue of memory effects investigated in this pa-
per can be partially answered: diffusing particles forget the
memory of the deterministic initial position, as well as the

memory of their past itinerary, when they evolve in time-

independent random environments with finite spatial correla-

tion scales. Indefinitely persistent memory can be found, for

instance, in case of diffusion in velocity fields with infinite

spatial correlation range.

The behavior of the diffusion in time-variable environ-

ments requires further investigations. For instance, it is

known that a sufficiently fast decay of the time correlation

functions ensures the convergence toward a normal diffusion

even in absence of spatial decorrelation �16,19�. However,

for velocity fields with oscillating time correlations the con-

dition of convergent Kubo formula, although a necessary

condition for normal diffusion limit, may be far from being

sufficient �19�. The challenge is to find the meaning of the

memory terms for anomalous diffusion in conditions of non-

trivial interplay of temporal and spatial correlations.

For continuous processes, analyses of memory effects via

Lagrangian velocity correlations assume unique solutions of

the Itô and Fokker-Planck equations. Nevertheless, the lack

of smoothness of the velocity samples often precludes the

existence of unique solutions. Moreover, as shown in Ref.

�24�, uniqueness is also an essential ingredient in proving the

translation invariance of the ensemble average of the funda-

mental solution of the Fokker-Planck equation and the

equivalent property of statistical homogeneity of the La-

grangian velocity field. When these properties are not en-

sured, as in case of our numerical setup, deterministic initial

conditions induce memory effects on the effective diffusion

coefficients. Even though in such cases first-order approxi-

mations still capture the asymptotic behavior �24�, numerical

models have to be developed for the transitory regime.

In this paper, memory effects were quantified in a

straightforward way by correlations between the displace-

ments of the particles and starting positions. In Ref. �37� it

was shown that memory effects on diffusion coefficients are

described in more detail by a hierarchy of Lagrangian corre-
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lations, sampled on increasing paths on the set of trajectories

starting at a given initial position. A particular case is the

expansion of the diffusion coefficients in sums of correla-

tions of increments of the process sampled on a single tra-

jectory �28,38�. Such representations of the diffusion coeffi-

cients, using double summations of correlations, suggest

possible connections with the method of memory kernels

�2,4,5� and motivate further work.
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APPENDIX A: MEAN VALUE AND COVARIANCE

COMPONENTS

The coefficients of the Fokker-Planck equation defined in

Eqs. �5� and �6� can be related under the conditions formu-

lated in Eqs. �4�, �7�, and �8� to the time derivatives of the

mean and covariance components. Therefore, to derive the

general expressions of the mean and covariances, we first

compute their derivatives.

The derivative of the first moment can be computed as

follows:

d

dt
�i�t� = lim

�t→0

1

�t
��i�t + �t� − �i�t��

= lim
�t→0

1

�t
�� xi�c�x�,t + �t�dx� −� xic�x,t�dx�

=� � lim
�t→0

1

�t
� �xi� − xi�g�x�,t + �t�x,t�dx��

� c�x,t�dx ,

where we used Eq. �3� and the normalization property of g.

For �t→0, using Eqs. �4�, �5�, and �7� one obtains

d

dt
�i�t� =� Vi�x,t�c�x,t�dx = V̄i�t� . �A1�

By integrating Eq. �A1� we get Eq. �9� in the main text.

To compute the derivative of the variance we proceed like

for the mean,

sij�t + �t� − sij�t� =� xi�x j�c�x�,t + �t�dx� −� xix jc�x,t�dx

− ��i�t + �t�� j�t + �t� − �i�t�� j�t��

=� c�x,t�dx� �xi� − xi��x j� − x j�g�x�,t

+ �t�x,t�dx� +� xic�x,t�dx

�� �x j� − x j�g�x�,t + �t�x,t�dx�

+� x jc�x,t�dx� �xi� − xi�g�x�,t

+ �t�x,t�dx� − ��i�t + �t�� j�t + �t�

− �i�t�� j�t�� ,

and using Eqs. �4�–�8� for �t→0, we obtain the derivative

d

dt
sij�t� = 2� Dij�x,t�c�x,t�dx +� �xiV j�x,t�

+ x jVi�x,t��c�x,t�dx −
d

dt
��i�t�� j�t�� ,

which after expressing the last term by Eq. �A1� takes the

form

d

dt
sij�t� = 2� Dij�x,t�c�x,t�dx +� �xi�V j�x,t� − V̄ j�t��

+ x j�Vi�x,t� − V̄i�t���c�x,t�dx . �A2�

Next, we highlight the dependence on the initial positions of

the second term in Eq. �A2� and obtain an equivalent expres-

sion of the time derivative of sij�t�,

d

dt
sij�t� = 2� Dij�x,t�c�x,t�dx +� c�x0,t0�dx0� ��xi − x0i�

��V j�x,t� − V̄ j�t�� + �x j − x0j��Vi�x,t�

− V̄i�t���g�x,t�x0,t0�dx +� c�x0,t0�dx0

�� ��x0i − �i�t0���V j�x,t� − V̄ j�t�� + �x0j − � j�t0��

��Vi�x,t� − V̄i�t���g�x,t�x0,t0�dx . �A3�

To analyze the second term in Eq. �A3�, we consider a time

sequence t0� t1¯ 	 tk	 tk+1¯ � tn= t, tk+1− tk=�t, and the

joint probabilities p of the sequence of events

�x0 , t0� , . . . , �xn−1 , tn−1� , �x , t�. The contribution of �xi

−x0i�V j�x , t� can be expressed using the Chapman-

Kolmogorov equation and the consistency property of p that

integrating over intermediate states one obtains reduced or-

der joint probabilities as follows:

� c�x0,t0�dx0� �xi − x0i�V j�x,t�g�x,t�x0,t0�dx

=� . . .� ��
k=0

n−1

�xk+1,i − xk,i��V j�x,t�

�p�x,t;xn−1,tn−1; . . . ;x0,t0�dxdxn−1 . . . dx0

= �
k=0

n−1

� � � �xk+1,i − xk,i�V j�x,t�

�g�x,t�xk+1,tk+1�g�xk+1,tk+1�xk,tk�c�xk,tk�dxdxk+1dxk

= �
k=0

n−1

� c�xk,tk�dxk� �xk+1,i − xk,i�
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�V�t,xk+1�g�xk+1,tk+1�xk,tk�dxk+1, �A4�

where V�t ;xk+1 , tk+1�=�V j�x , t�g�x , t �xk+1 , tk+1�dx.

Because the velocity defined by Eq. �5� is always finite,

the function V�t ;xk+1 , tk+1� is bounded, i.e., there exists an

M �0 so that V�t ;xk+1 , tk+1��M for all xk+1�R
3 and tk+1

�R. By using Eq. �8� for i= j and the Cauchy-Schwarz in-

equality in the form

��
�x�−x���

�xi�g�x�,t + �t�x,t�dx�
2

� �
�x�−x���

xi
2
g�x�,t + �t�x,t�dx�

� �
�x�−x���

g�x�,t + �t�x,t�dx�

one obtains the condition

lim
�t→0

1

�t
�

�x�−x���

�xi��g�x�,t + �t�x,t�dx� = 0. �A5�

Computing the last integral in Eq. �A4� as sum between the

integral over the sphere of radius � and the integral outside

the sphere, we have

��
�xk+1−xk���

�xk+1,i − xk,i�

�V�t;xk+1,tk+1�g�xk+1,tk+1�xk,tk�dxk+1�
� M�

�xk+1−xk���

��xk+1,i − xk,i��

�g�xk+1,tk + �t�xk,tk�dxk+1 →
�t→0

0 �A6�

due to condition �A5�. Considering the negative and positive

parts and applying the theorem of mean, the integral over the

sphere of radius � can be computed as

�
�xk+1−xk�	�

�xk+1,i − xk,i�V�t;xk+1,tk+1�g�xk+1,tk+1�xk,tk�dxk+1

= V�t;xk,tk+1��
�xk+1−xk�	�

�xk+1,i − xk,i�

�g�xk+1,tk + �t�xk,tk�dxk+1 + O��2� . �A7�

For �t→0, from Eq. �5� and Eqs. �A4�–�A7� one obtains

� c�x0,t0�dx0� �xi − x0i�V j�x,t�g�x,t�x0,t0�dx

=� c�x0,t0�dx0�
0

t

dt�� � V j�x,t�Vi�x�,t��

� g�x,t�x�,t��g�x�,t��x0,t0�dxdx� + O��2� .

Finally, passing to the limit �→0, we have

� c�x0,t0�dx0� �xi − x0i�V j�x,t�g�x,t�x0,t0�dx

=� c�x0,t0�dx0�
0

t

dt�� � V j�x,t�Vi�x�,t��

� g�x,t�x�,t��g�x�,t��x0,t0�dxdx�. �A8�

Replacing in the second term of Eq. �A3� the contribution
�Eq. �A8�� and the similar one obtained by permutation of
the indices i and j one obtains Eq. �11� in the main text.

APPENDIX B: LAGRANGIAN DESCRIPTION

The expectation 	f(X�t�)
=�f�x�c�x , t�dx of some func-
tion with compact support f�x� can be written by using the
Dirac � distribution as

�� f�x���x − X�t��dx� =� f�x�	��x − X�t��
dx .

Hence, the one-point probability density �i.e., the normalized
concentration� can formally be written as c�x , t�= 	��x
−X�t��
, and the n-point joint densities as expectations of
products of delta functions �e.g., �39��.

Similarly, the transition probability density is the condi-
tional expectation g�x , t �x0 , t0�= 	��x−X�t�� �X�t0�
= 	��x
−X�t��
D, where by angular brackets with subscript D we
denoted the conditional expectation for fixed initial positions
X�0� of the particles. For the purpose of a transparent La-
grangian description it is also convenient to use the subscript
X0 for averages with respect to initial positions. With these,
the concentration �Eq. �3�� can be expressed as

c�x,t� =� g�x,t�x0,t0�c�x0,t0�dx0 = 	��x − X�t��
DX0
.

�B1�

In the same way, for higher order probability densities one
obtains

p�xn,tn;xn−1,tn−1; . . . ;x1,t1�

=� p�xn,tn;xn−1,tn−1; . . . ;x1,t1�x0,0�c�x0,t0�dx0

= 	��xn − X�tn����xn−1 − X�tn−1�� . . . ��xn − X�tn��
DX0
.

�B2�
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