000007895 001__ 7895
000007895 005__ 20210129210436.0
000007895 0247_ $$2pmid$$apmid:19800409
000007895 0247_ $$2DOI$$a10.1016/j.neuroimage.2009.09.063
000007895 0247_ $$2WOS$$aWOS:000272808400003
000007895 037__ $$aPreJuSER-7895
000007895 041__ $$aeng
000007895 082__ $$a610
000007895 084__ $$2WoS$$aNeurosciences
000007895 084__ $$2WoS$$aNeuroimaging
000007895 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000007895 1001_ $$0P:(DE-Juel1)VDB53456$$aWilms, M.$$b0$$uFZJ
000007895 245__ $$aComparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v)
000007895 260__ $$aOrlando, Fla.$$bAcademic Press$$c2010
000007895 300__ $$a1171 - 1179
000007895 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000007895 3367_ $$2DataCite$$aOutput Types/Journal article
000007895 3367_ $$00$$2EndNote$$aJournal Article
000007895 3367_ $$2BibTeX$$aARTICLE
000007895 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000007895 3367_ $$2DRIVER$$aarticle
000007895 440_0 $$04545$$aNeuroImage$$v49$$x1053-8119$$y2
000007895 500__ $$aWe are grateful to our colleagues from the MR group of the institute for Neurosciences and Medicine for their assistance in acquiring the fMRI data. G.R.F. was supported by the Deutsche Forschungsgemeinschaft. S.B.E. was supported by the Human Brain Project (R01-MH074457-01A1) and the Helmholtz Initiative on Systems-Biology "The Human Brain Model." This work was part of a Human Brain Project/Neuroinformatics Research Grant funded by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, and the National Institute of Mental Health (K.A.).
000007895 520__ $$aCytoarchitectonic maps of human striate and extrastriate visual cortex based upon post-mortem brains can be correlated with functionally defined cortical areas using, for example, fMRI. We here assess the correspondence of anatomical maps of the visual cortex with functionally defined in vivo visual areas using retinotopic mapping. To this end, anatomical maximum probability maps (aMPM) derived from individual cytoarchitectonic maps of striate and extrastriate visual areas were compared with functional localisers for the early visual areas. Using fMRI, we delineated dorsal and ventral human retinotopic areas V1, V2, and V3, as well as a quarter-field visual field representation lateral to V3v, V4(v), in 24 healthy subjects. Based on these individual definitions, a functional maximum probability map (fMPM) was then computed in analogy to the aMPM. Functional and anatomical MPMs were highly correlated at group level: 78.5% of activated voxels in the fMPM were correctly assigned by the aMPM. The group aMPM was less effective in predicting functional retinotopic areas in the individual brain due to the large inter-individual variability in the location and extent of visual areas (mean overlap 32-69%). We conclude that cytoarchitectonic maps of striate and extrastriate visual areas may provide a valuable method for assigning functional group activations and thus add valuable a priori knowledge to the analysis of functional imaging data of the visual cortex.
000007895 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000007895 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000007895 588__ $$aDataset connected to Web of Science, Pubmed
000007895 650_2 $$2MeSH$$aAdult
000007895 650_2 $$2MeSH$$aBrain Mapping
000007895 650_2 $$2MeSH$$aFemale
000007895 650_2 $$2MeSH$$aHumans
000007895 650_2 $$2MeSH$$aMale
000007895 650_2 $$2MeSH$$aPhotic Stimulation
000007895 650_2 $$2MeSH$$aProbability
000007895 650_2 $$2MeSH$$aVisual Cortex: cytology
000007895 650_2 $$2MeSH$$aVisual Cortex: physiology
000007895 650_2 $$2MeSH$$aVisual Pathways: cytology
000007895 650_2 $$2MeSH$$aVisual Pathways: physiology
000007895 650_2 $$2MeSH$$aVisual Perception: physiology
000007895 650_2 $$2MeSH$$aYoung Adult
000007895 650_7 $$2WoSType$$aJ
000007895 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S. B.$$b1$$uFZJ
000007895 7001_ $$0P:(DE-Juel1)VDB33810$$aHömke, L.$$b2$$uFZJ
000007895 7001_ $$0P:(DE-Juel1)VDB61059$$aRottschy, C.$$b3$$uFZJ
000007895 7001_ $$0P:(DE-HGF)0$$aKujovic, M.$$b4
000007895 7001_ $$0P:(DE-Juel1)131631$$aAmunts, K.$$b5$$uFZJ
000007895 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b6$$uFZJ
000007895 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2009.09.063$$gVol. 49, p. 1171 - 1179$$p1171 - 1179$$q49<1171 - 1179$$tNeuroImage$$v49$$x1053-8119$$y2010
000007895 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2009.09.063
000007895 909CO $$ooai:juser.fz-juelich.de:7895$$pVDB
000007895 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000007895 9141_ $$y2010
000007895 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000007895 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000007895 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000007895 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000007895 9201_ $$0I:(DE-Juel1)INM-3-20090406$$gINM$$kINM-3$$lKognitive Neurowissenschaften$$x2
000007895 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x3
000007895 970__ $$aVDB:(DE-Juel1)116661
000007895 980__ $$aVDB
000007895 980__ $$aConvertedRecord
000007895 980__ $$ajournal
000007895 980__ $$aI:(DE-Juel1)INM-1-20090406
000007895 980__ $$aI:(DE-Juel1)INM-2-20090406
000007895 980__ $$aI:(DE-Juel1)INM-3-20090406
000007895 980__ $$aI:(DE-82)080010_20140620
000007895 980__ $$aUNRESTRICTED
000007895 981__ $$aI:(DE-Juel1)INM-2-20090406
000007895 981__ $$aI:(DE-Juel1)INM-3-20090406
000007895 981__ $$aI:(DE-Juel1)VDB1046