001     7895
005     20210129210436.0
024 7 _ |2 pmid
|a pmid:19800409
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2009.09.063
024 7 _ |2 WOS
|a WOS:000272808400003
037 _ _ |a PreJuSER-7895
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)VDB53456
|a Wilms, M.
|b 0
|u FZJ
245 _ _ |a Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v)
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2010
300 _ _ |a 1171 - 1179
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 49
|x 1053-8119
|y 2
500 _ _ |a We are grateful to our colleagues from the MR group of the institute for Neurosciences and Medicine for their assistance in acquiring the fMRI data. G.R.F. was supported by the Deutsche Forschungsgemeinschaft. S.B.E. was supported by the Human Brain Project (R01-MH074457-01A1) and the Helmholtz Initiative on Systems-Biology "The Human Brain Model." This work was part of a Human Brain Project/Neuroinformatics Research Grant funded by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, and the National Institute of Mental Health (K.A.).
520 _ _ |a Cytoarchitectonic maps of human striate and extrastriate visual cortex based upon post-mortem brains can be correlated with functionally defined cortical areas using, for example, fMRI. We here assess the correspondence of anatomical maps of the visual cortex with functionally defined in vivo visual areas using retinotopic mapping. To this end, anatomical maximum probability maps (aMPM) derived from individual cytoarchitectonic maps of striate and extrastriate visual areas were compared with functional localisers for the early visual areas. Using fMRI, we delineated dorsal and ventral human retinotopic areas V1, V2, and V3, as well as a quarter-field visual field representation lateral to V3v, V4(v), in 24 healthy subjects. Based on these individual definitions, a functional maximum probability map (fMPM) was then computed in analogy to the aMPM. Functional and anatomical MPMs were highly correlated at group level: 78.5% of activated voxels in the fMPM were correctly assigned by the aMPM. The group aMPM was less effective in predicting functional retinotopic areas in the individual brain due to the large inter-individual variability in the location and extent of visual areas (mean overlap 32-69%). We conclude that cytoarchitectonic maps of striate and extrastriate visual areas may provide a valuable method for assigning functional group activations and thus add valuable a priori knowledge to the analysis of functional imaging data of the visual cortex.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89572
|a 89572 - (Dys-)function and Plasticity (POF2-89572)
|c POF2-89572
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Brain Mapping
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Photic Stimulation
650 _ 2 |2 MeSH
|a Probability
650 _ 2 |2 MeSH
|a Visual Cortex: cytology
650 _ 2 |2 MeSH
|a Visual Cortex: physiology
650 _ 2 |2 MeSH
|a Visual Pathways: cytology
650 _ 2 |2 MeSH
|a Visual Pathways: physiology
650 _ 2 |2 MeSH
|a Visual Perception: physiology
650 _ 2 |2 MeSH
|a Young Adult
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB33810
|a Hömke, L.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB61059
|a Rottschy, C.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Kujovic, M.
|b 4
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, K.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, G. R.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2009.09.063
|g Vol. 49, p. 1171 - 1179
|p 1171 - 1179
|q 49<1171 - 1179
|t NeuroImage
|v 49
|x 1053-8119
|y 2010
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2009.09.063
909 C O |o oai:juser.fz-juelich.de:7895
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89572
|a DE-HGF
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|g INM
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|g INM
|k INM-3
|l Kognitive Neurowissenschaften
|x 2
920 1 _ |0 I:(DE-82)080010_20140620
|g JARA
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 3
970 _ _ |a VDB:(DE-Juel1)116661
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-2-20090406
981 _ _ |a I:(DE-Juel1)INM-3-20090406
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21