000007896 001__ 7896
000007896 005__ 20210129210436.0
000007896 0247_ $$2pmid$$apmid:19733674
000007896 0247_ $$2DOI$$a10.1016/j.neuroimage.2009.08.059
000007896 0247_ $$2WOS$$aWOS:000272808400011
000007896 037__ $$aPreJuSER-7896
000007896 041__ $$aeng
000007896 082__ $$a610
000007896 084__ $$2WoS$$aNeurosciences
000007896 084__ $$2WoS$$aNeuroimaging
000007896 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000007896 1001_ $$0P:(DE-Juel1)VDB261$$aDammers, J.$$b0$$uFZJ
000007896 245__ $$aSignal enhancement in polarized light imaging by means of independent component analysis
000007896 260__ $$aOrlando, Fla.$$bAcademic Press$$c2010
000007896 300__ $$a1241 - 1248
000007896 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000007896 3367_ $$2DataCite$$aOutput Types/Journal article
000007896 3367_ $$00$$2EndNote$$aJournal Article
000007896 3367_ $$2BibTeX$$aARTICLE
000007896 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000007896 3367_ $$2DRIVER$$aarticle
000007896 440_0 $$04545$$aNeuroImage$$v49$$x1053-8119$$y2
000007896 500__ $$aThis work was supported by the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology. Moreover, we like to thank Dr. Bernd Sellhaus, MD (Institute of Neuropathology, RWTH Aachen University, Germany). We are grateful to Markus Cremer (Institute of Neuroscience and Medicine, Research Centre Julich, Germany) for excellent technical assistance and the preparation of the histological sections. Mechanical assembly of the polarimeter was done by the workshop of Friedrich-Schiller University of Jena, Germany.
000007896 520__ $$aPolarized light imaging (PLI) enables the evaluation of fiber orientations in histological sections of human postmortem brains, with ultra-high spatial resolution. PLI is based on the birefringent properties of the myelin sheath of nerve fibers. As a result, the polarization state of light propagating through a rotating polarimeter is changed in such a way that the detected signal at each measurement unit of a charged-coupled device (CCD) camera describes a sinusoidal signal. Vectors of the fiber orientation defined by inclination and direction angles can then directly be derived from the optical signals employing PLI analysis. However, noise, light scatter and filter inhomogeneities interfere with the original sinusoidal PLI signals. We here introduce a novel method using independent component analysis (ICA) to decompose the PLI images into statistically independent component maps. After decomposition, gray and white matter structures can clearly be distinguished from noise and other artifacts. The signal enhancement after artifact rejection is quantitatively evaluated in 134 histological whole brain sections. Thus, the primary sinusoidal signals from polarized light imaging can be effectively restored after noise and artifact rejection utilizing ICA. Our method therefore contributes to the analysis of nerve fiber orientation in the human brain within a micrometer scale.
000007896 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000007896 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x1
000007896 588__ $$aDataset connected to Web of Science, Pubmed
000007896 650_2 $$2MeSH$$aArtifacts
000007896 650_2 $$2MeSH$$aBrain: ultrastructure
000007896 650_2 $$2MeSH$$aCalibration
000007896 650_2 $$2MeSH$$aDust
000007896 650_2 $$2MeSH$$aHumans
000007896 650_2 $$2MeSH$$aImage Enhancement: methods
000007896 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000007896 650_2 $$2MeSH$$aLight
000007896 650_2 $$2MeSH$$aMyelin Sheath: ultrastructure
000007896 650_2 $$2MeSH$$aNerve Fibers, Myelinated: ultrastructure
000007896 650_2 $$2MeSH$$aNerve Fibers, Unmyelinated: ultrastructure
000007896 650_2 $$2MeSH$$aOptics and Photonics: methods
000007896 650_7 $$00$$2NLM Chemicals$$aDust
000007896 650_7 $$2WoSType$$aJ
000007896 65320 $$2Author$$aPolarized light imaging
000007896 65320 $$2Author$$aPLI
000007896 65320 $$2Author$$aindependent component analysis
000007896 65320 $$2Author$$aICA
000007896 65320 $$2Author$$ahuman brain mapping
000007896 7001_ $$0P:(DE-Juel1)VDB67318$$aAxer, M.$$b1$$uFZJ
000007896 7001_ $$0P:(DE-Juel1)131642$$aGräßel, D.$$b2$$uFZJ
000007896 7001_ $$0P:(DE-Juel1)VDB1883$$aPalm, C.$$b3$$uFZJ
000007896 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b4$$uFZJ
000007896 7001_ $$0P:(DE-Juel1)131631$$aAmunts, K.$$b5$$uFZJ
000007896 7001_ $$0P:(DE-Juel1)VDB2211$$aPietrzyk, U.$$b6$$uFZJ
000007896 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2009.08.059$$gVol. 49, p. 1241 - 1248$$p1241 - 1248$$q49<1241 - 1248$$tNeuroImage$$v49$$x1053-8119$$y2010
000007896 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2009.08.059
000007896 909CO $$ooai:juser.fz-juelich.de:7896$$pVDB
000007896 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000007896 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x1
000007896 9141_ $$y2010
000007896 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000007896 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000007896 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000007896 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000007896 970__ $$aVDB:(DE-Juel1)116662
000007896 980__ $$aVDB
000007896 980__ $$aConvertedRecord
000007896 980__ $$ajournal
000007896 980__ $$aI:(DE-Juel1)INM-1-20090406
000007896 980__ $$aI:(DE-Juel1)INM-2-20090406
000007896 980__ $$aI:(DE-82)080010_20140620
000007896 980__ $$aUNRESTRICTED
000007896 981__ $$aI:(DE-Juel1)INM-2-20090406
000007896 981__ $$aI:(DE-Juel1)VDB1046