001     7896
005     20210129210436.0
024 7 _ |2 pmid
|a pmid:19733674
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2009.08.059
024 7 _ |2 WOS
|a WOS:000272808400011
037 _ _ |a PreJuSER-7896
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Dammers, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB261
245 _ _ |a Signal enhancement in polarized light imaging by means of independent component analysis
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2010
300 _ _ |a 1241 - 1248
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a NeuroImage
|x 1053-8119
|0 4545
|y 2
|v 49
500 _ _ |a This work was supported by the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology. Moreover, we like to thank Dr. Bernd Sellhaus, MD (Institute of Neuropathology, RWTH Aachen University, Germany). We are grateful to Markus Cremer (Institute of Neuroscience and Medicine, Research Centre Julich, Germany) for excellent technical assistance and the preparation of the histological sections. Mechanical assembly of the polarimeter was done by the workshop of Friedrich-Schiller University of Jena, Germany.
520 _ _ |a Polarized light imaging (PLI) enables the evaluation of fiber orientations in histological sections of human postmortem brains, with ultra-high spatial resolution. PLI is based on the birefringent properties of the myelin sheath of nerve fibers. As a result, the polarization state of light propagating through a rotating polarimeter is changed in such a way that the detected signal at each measurement unit of a charged-coupled device (CCD) camera describes a sinusoidal signal. Vectors of the fiber orientation defined by inclination and direction angles can then directly be derived from the optical signals employing PLI analysis. However, noise, light scatter and filter inhomogeneities interfere with the original sinusoidal PLI signals. We here introduce a novel method using independent component analysis (ICA) to decompose the PLI images into statistically independent component maps. After decomposition, gray and white matter structures can clearly be distinguished from noise and other artifacts. The signal enhancement after artifact rejection is quantitatively evaluated in 134 histological whole brain sections. Thus, the primary sinusoidal signals from polarized light imaging can be effectively restored after noise and artifact rejection utilizing ICA. Our method therefore contributes to the analysis of nerve fiber orientation in the human brain within a micrometer scale.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89574 - Theory, modelling and simulation (POF2-89574)
|0 G:(DE-HGF)POF2-89574
|c POF2-89574
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Artifacts
650 _ 2 |2 MeSH
|a Brain: ultrastructure
650 _ 2 |2 MeSH
|a Calibration
650 _ 2 |2 MeSH
|a Dust
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Enhancement: methods
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Myelin Sheath: ultrastructure
650 _ 2 |2 MeSH
|a Nerve Fibers, Myelinated: ultrastructure
650 _ 2 |2 MeSH
|a Nerve Fibers, Unmyelinated: ultrastructure
650 _ 2 |2 MeSH
|a Optics and Photonics: methods
650 _ 7 |0 0
|2 NLM Chemicals
|a Dust
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Polarized light imaging
653 2 0 |2 Author
|a PLI
653 2 0 |2 Author
|a independent component analysis
653 2 0 |2 Author
|a ICA
653 2 0 |2 Author
|a human brain mapping
700 1 _ |a Axer, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB67318
700 1 _ |a Gräßel, D.
|b 2
|u FZJ
|0 P:(DE-Juel1)131642
700 1 _ |a Palm, C.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB1883
700 1 _ |a Zilles, K.
|b 4
|u FZJ
|0 P:(DE-Juel1)131714
700 1 _ |a Amunts, K.
|b 5
|u FZJ
|0 P:(DE-Juel1)131631
700 1 _ |a Pietrzyk, U.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB2211
773 _ _ |a 10.1016/j.neuroimage.2009.08.059
|g Vol. 49, p. 1241 - 1248
|p 1241 - 1248
|q 49<1241 - 1248
|0 PERI:(DE-600)1471418-8
|t NeuroImage
|v 49
|y 2010
|x 1053-8119
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2009.08.059
909 C O |o oai:juser.fz-juelich.de:7896
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89574
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|g INM
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|g INM
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)116662
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-2-20090406
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21