000008000 001__ 8000
000008000 005__ 20240610120514.0
000008000 0247_ $$2pmid$$apmid:20095714
000008000 0247_ $$2DOI$$a10.1063/1.3285269
000008000 0247_ $$2WOS$$aWOS:000273689000060
000008000 0247_ $$2Handle$$a2128/19508
000008000 037__ $$aPreJuSER-8000
000008000 041__ $$aeng
000008000 082__ $$a540
000008000 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000008000 1001_ $$0P:(DE-Juel1)VDB89986$$aKhoshnood, A.$$b0$$uFZJ
000008000 245__ $$aLipid membranes with transmembrane proteins in shear flow
000008000 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010
000008000 300__ $$a025101
000008000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008000 3367_ $$2DataCite$$aOutput Types/Journal article
000008000 3367_ $$00$$2EndNote$$aJournal Article
000008000 3367_ $$2BibTeX$$aARTICLE
000008000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008000 3367_ $$2DRIVER$$aarticle
000008000 440_0 $$03145$$aJournal of Chemical Physics$$v132$$x0021-9606$$y2
000008000 500__ $$aRecord converted from VDB: 12.11.2012
000008000 520__ $$aThe effects of embedded proteins on the dynamical properties of lipid bilayer membranes are studied in shear flow. Coarse-grained molecular simulations are employed, in which lipids are modeled as short polymers consisting of hydrophilic head groups and hydrophobic tail monomers; similarly, transmembrane proteins are modeled as connected hydrophobic double- or triple-chain molecules with hydrophilic groups at both ends. In thermal equilibrium, rigid proteinlike molecules aggregate in a membrane of flexible lipids, while flexible proteins do not aggregate. In shear flow parallel to the membrane, the monolayers of lipid bilayer slide over each other. The presence of transmembrane proteins enhances the intermonolayer friction. The friction coefficient depends on the chain lengths of lipids, the membrane tension, the length of the protein, and the cluster size. It is found to increase with protein length (with positive mismatch, i.e., proteins which are longer than the membrane thickness) and protein cluster size. In flow, proteins get oriented in the flow direction to reduce friction, with large fluctuations of the orientation angle.
000008000 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000008000 588__ $$aDataset connected to Web of Science, Pubmed
000008000 650_2 $$2MeSH$$aComputer Simulation
000008000 650_2 $$2MeSH$$aFriction
000008000 650_2 $$2MeSH$$aMembrane Lipids: chemistry
000008000 650_2 $$2MeSH$$aMembrane Proteins: chemistry
000008000 650_2 $$2MeSH$$aModels, Molecular
000008000 650_7 $$00$$2NLM Chemicals$$aMembrane Lipids
000008000 650_7 $$00$$2NLM Chemicals$$aMembrane Proteins
000008000 650_7 $$2WoSType$$aJ
000008000 65320 $$2Author$$aaggregation
000008000 65320 $$2Author$$abiological fluid dynamics
000008000 65320 $$2Author$$abiomechanics
000008000 65320 $$2Author$$abiomembranes
000008000 65320 $$2Author$$acellular biophysics
000008000 65320 $$2Author$$afriction
000008000 65320 $$2Author$$ahydrophilicity
000008000 65320 $$2Author$$ahydrophobicity
000008000 65320 $$2Author$$alipid bilayers
000008000 65320 $$2Author$$amolecular biophysics
000008000 65320 $$2Author$$amolecular dynamics method
000008000 65320 $$2Author$$aproteins
000008000 65320 $$2Author$$ashear flow
000008000 7001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b1$$uFZJ
000008000 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000008000 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.3285269$$gVol. 132, p. 025101$$p025101$$q132<025101$$tThe @journal of chemical physics$$v132$$x0021-9606$$y2010
000008000 8567_ $$uhttp://dx.doi.org/10.1063/1.3285269
000008000 8564_ $$uhttps://juser.fz-juelich.de/record/8000/files/1.3285269.pdf$$yOpenAccess
000008000 8564_ $$uhttps://juser.fz-juelich.de/record/8000/files/1.3285269.gif?subformat=icon$$xicon$$yOpenAccess
000008000 8564_ $$uhttps://juser.fz-juelich.de/record/8000/files/1.3285269.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000008000 8564_ $$uhttps://juser.fz-juelich.de/record/8000/files/1.3285269.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000008000 8564_ $$uhttps://juser.fz-juelich.de/record/8000/files/1.3285269.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000008000 909CO $$ooai:juser.fz-juelich.de:8000$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000008000 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000008000 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000008000 9141_ $$y2010
000008000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000008000 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008000 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000008000 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000008000 970__ $$aVDB:(DE-Juel1)116807
000008000 9801_ $$aFullTexts
000008000 980__ $$aVDB
000008000 980__ $$aConvertedRecord
000008000 980__ $$ajournal
000008000 980__ $$aI:(DE-Juel1)ICS-2-20110106
000008000 980__ $$aI:(DE-Juel1)IAS-2-20090406
000008000 980__ $$aUNRESTRICTED
000008000 981__ $$aI:(DE-Juel1)IBI-5-20200312
000008000 981__ $$aI:(DE-Juel1)IAS-2-20090406
000008000 981__ $$aI:(DE-Juel1)ICS-2-20110106
000008000 981__ $$aI:(DE-Juel1)IAS-2-20090406