001     8000
005     20240610120514.0
024 7 _ |a pmid:20095714
|2 pmid
024 7 _ |a 10.1063/1.3285269
|2 DOI
024 7 _ |a WOS:000273689000060
|2 WOS
024 7 _ |a 2128/19508
|2 Handle
037 _ _ |a PreJuSER-8000
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Khoshnood, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB89986
245 _ _ |a Lipid membranes with transmembrane proteins in shear flow
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2010
300 _ _ |a 025101
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Chemical Physics
|x 0021-9606
|0 3145
|y 2
|v 132
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The effects of embedded proteins on the dynamical properties of lipid bilayer membranes are studied in shear flow. Coarse-grained molecular simulations are employed, in which lipids are modeled as short polymers consisting of hydrophilic head groups and hydrophobic tail monomers; similarly, transmembrane proteins are modeled as connected hydrophobic double- or triple-chain molecules with hydrophilic groups at both ends. In thermal equilibrium, rigid proteinlike molecules aggregate in a membrane of flexible lipids, while flexible proteins do not aggregate. In shear flow parallel to the membrane, the monolayers of lipid bilayer slide over each other. The presence of transmembrane proteins enhances the intermonolayer friction. The friction coefficient depends on the chain lengths of lipids, the membrane tension, the length of the protein, and the cluster size. It is found to increase with protein length (with positive mismatch, i.e., proteins which are longer than the membrane thickness) and protein cluster size. In flow, proteins get oriented in the flow direction to reduce friction, with large fluctuations of the orientation angle.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Friction
650 _ 2 |2 MeSH
|a Membrane Lipids: chemistry
650 _ 2 |2 MeSH
|a Membrane Proteins: chemistry
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 7 |0 0
|2 NLM Chemicals
|a Membrane Lipids
650 _ 7 |0 0
|2 NLM Chemicals
|a Membrane Proteins
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a aggregation
653 2 0 |2 Author
|a biological fluid dynamics
653 2 0 |2 Author
|a biomechanics
653 2 0 |2 Author
|a biomembranes
653 2 0 |2 Author
|a cellular biophysics
653 2 0 |2 Author
|a friction
653 2 0 |2 Author
|a hydrophilicity
653 2 0 |2 Author
|a hydrophobicity
653 2 0 |2 Author
|a lipid bilayers
653 2 0 |2 Author
|a molecular biophysics
653 2 0 |2 Author
|a molecular dynamics method
653 2 0 |2 Author
|a proteins
653 2 0 |2 Author
|a shear flow
700 1 _ |a Noguchi, H.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB37578
700 1 _ |a Gompper, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1063/1.3285269
|g Vol. 132, p. 025101
|p 025101
|q 132<025101
|0 PERI:(DE-600)1473050-9
|t The @journal of chemical physics
|v 132
|y 2010
|x 0021-9606
856 7 _ |u http://dx.doi.org/10.1063/1.3285269
856 4 _ |u https://juser.fz-juelich.de/record/8000/files/1.3285269.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8000/files/1.3285269.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8000/files/1.3285269.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8000/files/1.3285269.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/8000/files/1.3285269.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:8000
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k IFF-2
|l Theorie der Weichen Materie und Biophysik
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB782
|x 0
920 1 _ |k IAS-2
|l Theorie der Weichen Materie und Biophysik
|g IAS
|z IFF-2
|0 I:(DE-Juel1)IAS-2-20090406
|x 1
970 _ _ |a VDB:(DE-Juel1)116807
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21