000807068 001__ 807068
000807068 005__ 20240711085629.0
000807068 0247_ $$2doi$$a10.1111/jace.13799
000807068 0247_ $$2ISSN$$a0002-7820
000807068 0247_ $$2ISSN$$a1551-2916
000807068 0247_ $$2WOS$$aWOS:000368076500059
000807068 037__ $$aFZJ-2016-02099
000807068 082__ $$a660
000807068 1001_ $$0P:(DE-HGF)0$$aJamin, Christine$$b0
000807068 245__ $$aConstrained Sintering of Alumina Stripes on Rigid Substrates: Effect of Substrate Roughness and Coating
000807068 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2015
000807068 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459342858_28741
000807068 3367_ $$2DataCite$$aOutput Types/Journal article
000807068 3367_ $$00$$2EndNote$$aJournal Article
000807068 3367_ $$2BibTeX$$aARTICLE
000807068 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807068 3367_ $$2DRIVER$$aarticle
000807068 520__ $$aMicromolding in capillaries has been used to fabricate alumina stripes on smooth (Ra = 0.5 nm) and rough substrates (Ra = 900 nm). Different lateral (10–500 μm) and vertical stripe dimensions (8–27 μm) were used to study the influence of substrate roughness (smooth and rough sapphire) and substrate material (platinum coated and plain sapphire) on sintering behavior. Alumina stripes experience edge delamination during sintering on a rigid substrate independent of substrate roughness. However, enhanced substrate roughness reduced delamination length by half and lowered lateral strains by up to 0.10. Grooves in the rough substrate were found to be responsible for this feature as they act as crack propagation barriers and generate local density minima. Accompanying discrete element simulations revealed a localized triaxial stress state at the grooves of a sinusoidal-shaped substrate interface as the main cause of the density minima. Platinum interlayers also resulted in reduced delamination by 40% in some stripe geometries while density was enhanced by 4% and lateral strains doubled in some geometries. Creep of the metal layer during sintering is thought to be the reason for this seemingly contradictory behavior.
000807068 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000807068 588__ $$aDataset connected to CrossRef
000807068 7001_ $$0P:(DE-HGF)0$$aRasp, Tobias$$b1
000807068 7001_ $$0P:(DE-HGF)0$$aKraft, Torsten$$b2
000807068 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$eCorresponding author
000807068 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.13799$$gVol. 98, no. 12, p. 3988 - 3995$$n12$$p3988 - 3995$$tJournal of the American Ceramic Society$$v98$$x0002-7820$$y2015
000807068 8564_ $$uhttps://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.pdf$$yRestricted
000807068 8564_ $$uhttps://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.gif?subformat=icon$$xicon$$yRestricted
000807068 8564_ $$uhttps://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000807068 8564_ $$uhttps://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-180$$xicon-180$$yRestricted
000807068 8564_ $$uhttps://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-640$$xicon-640$$yRestricted
000807068 8564_ $$uhttps://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa$$xpdfa$$yRestricted
000807068 909CO $$ooai:juser.fz-juelich.de:807068$$pVDB
000807068 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807068 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000807068 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2014
000807068 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807068 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000807068 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807068 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000807068 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000807068 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000807068 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807068 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000807068 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000807068 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000807068 9141_ $$y2016
000807068 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000807068 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000807068 980__ $$ajournal
000807068 980__ $$aVDB
000807068 980__ $$aUNRESTRICTED
000807068 980__ $$aI:(DE-Juel1)IEK-1-20101013
000807068 980__ $$aI:(DE-82)080011_20140620
000807068 981__ $$aI:(DE-Juel1)IMD-2-20101013