001     807068
005     20240711085629.0
024 7 _ |2 doi
|a 10.1111/jace.13799
024 7 _ |2 ISSN
|a 0002-7820
024 7 _ |2 ISSN
|a 1551-2916
024 7 _ |2 WOS
|a WOS:000368076500059
037 _ _ |a FZJ-2016-02099
082 _ _ |a 660
100 1 _ |0 P:(DE-HGF)0
|a Jamin, Christine
|b 0
245 _ _ |a Constrained Sintering of Alumina Stripes on Rigid Substrates: Effect of Substrate Roughness and Coating
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1459342858_28741
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Micromolding in capillaries has been used to fabricate alumina stripes on smooth (Ra = 0.5 nm) and rough substrates (Ra = 900 nm). Different lateral (10–500 μm) and vertical stripe dimensions (8–27 μm) were used to study the influence of substrate roughness (smooth and rough sapphire) and substrate material (platinum coated and plain sapphire) on sintering behavior. Alumina stripes experience edge delamination during sintering on a rigid substrate independent of substrate roughness. However, enhanced substrate roughness reduced delamination length by half and lowered lateral strains by up to 0.10. Grooves in the rough substrate were found to be responsible for this feature as they act as crack propagation barriers and generate local density minima. Accompanying discrete element simulations revealed a localized triaxial stress state at the grooves of a sinusoidal-shaped substrate interface as the main cause of the density minima. Platinum interlayers also resulted in reduced delamination by 40% in some stripe geometries while density was enhanced by 4% and lateral strains doubled in some geometries. Creep of the metal layer during sintering is thought to be the reason for this seemingly contradictory behavior.
536 _ _ |0 G:(DE-HGF)POF3-135
|a 135 - Fuel Cells (POF3-135)
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Rasp, Tobias
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Kraft, Torsten
|b 2
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 3
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2008170-4
|a 10.1111/jace.13799
|g Vol. 98, no. 12, p. 3988 - 3995
|n 12
|p 3988 - 3995
|t Journal of the American Ceramic Society
|v 98
|x 0002-7820
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/807068/files/Jamin_et_al-2015-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:807068
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-135
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J AM CERAM SOC : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21