000807075 001__ 807075
000807075 005__ 20210129222649.0
000807075 0247_ $$2doi$$a10.1088/0953-8984/28/13/134004
000807075 0247_ $$2ISSN$$a0953-8984
000807075 0247_ $$2ISSN$$a1361-648X
000807075 0247_ $$2WOS$$aWOS:000371905200008
000807075 037__ $$aFZJ-2016-02106
000807075 082__ $$a530
000807075 1001_ $$0P:(DE-HGF)0$$aKrass, Marc-Dominik$$b0
000807075 245__ $$aDynamic shear force microscopy of viscosity in nanometer-confined hexadecane layers
000807075 260__ $$aBristol$$bIOP Publ.$$c2016
000807075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459231550_26033
000807075 3367_ $$2DataCite$$aOutput Types/Journal article
000807075 3367_ $$00$$2EndNote$$aJournal Article
000807075 3367_ $$2BibTeX$$aARTICLE
000807075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807075 3367_ $$2DRIVER$$aarticle
000807075 520__ $$aHexadecane exhibits pronounced molecular layering upon confinement to gaps of a few nanometer width which is discussed for its role in boundary lubrication. We have probed the mechanical properties of the confined layers with the help of an atomic force microscope, by quasi-static normal force measurements and by analyzing the lateral tip motion of a magnetically actuated torsional cantilever oscillation. The molecular layering is modeled by a oscillatory force curve and the tip approach is simulated assuming thermal equilibrium correlations in the liquid. The shear response of the confined layers reveals gradually increasing stiffness and viscous dissipation for a decreasing number of confined layers.
000807075 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000807075 588__ $$aDataset connected to CrossRef
000807075 7001_ $$0P:(DE-HGF)0$$aGosvami, Nitya Nand$$b1
000807075 7001_ $$0P:(DE-HGF)0$$aCarpick, Robert W$$b2
000807075 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b3$$ufzj
000807075 7001_ $$0P:(DE-HGF)0$$aBennewitz, Roland$$b4$$eCorresponding author
000807075 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/28/13/134004$$gVol. 28, no. 13, p. 134004 -$$n13$$p134004 -$$tJournal of physics / Condensed matter$$v28$$x1361-648X$$y2016
000807075 8564_ $$uhttps://juser.fz-juelich.de/record/807075/files/cm_28_13_134004.pdf$$yRestricted
000807075 8564_ $$uhttps://juser.fz-juelich.de/record/807075/files/cm_28_13_134004.pdf?subformat=pdfa$$xpdfa$$yRestricted
000807075 909CO $$ooai:juser.fz-juelich.de:807075$$pVDB
000807075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000807075 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000807075 9141_ $$y2016
000807075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807075 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2014
000807075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807075 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000807075 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807075 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000807075 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000807075 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000807075 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000807075 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000807075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807075 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000807075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807075 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000807075 980__ $$ajournal
000807075 980__ $$aVDB
000807075 980__ $$aUNRESTRICTED
000807075 980__ $$aI:(DE-Juel1)JSC-20090406