000807084 001__ 807084
000807084 005__ 20210129222651.0
000807084 0247_ $$2doi$$a10.1126/science.aad3000
000807084 0247_ $$2ISSN$$a0036-8075
000807084 0247_ $$2ISSN$$a1095-9203
000807084 0247_ $$2WOS$$aWOS:000372756200038
000807084 0247_ $$2altmetric$$aaltmetric:6319751
000807084 0247_ $$2pmid$$apmid:27013736
000807084 037__ $$aFZJ-2016-02113
000807084 041__ $$aEnglish
000807084 082__ $$a500
000807084 1001_ $$0P:(DE-HGF)0$$aLejaeghere, K.$$b0$$eCorresponding author
000807084 245__ $$aReproducibility in density functional theory calculations of solids
000807084 260__ $$aWashington, DC [u.a.]$$bAmerican Association for the Advancement of Science64196$$c2016
000807084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459760714_5281
000807084 3367_ $$2DataCite$$aOutput Types/Journal article
000807084 3367_ $$00$$2EndNote$$aJournal Article
000807084 3367_ $$2BibTeX$$aARTICLE
000807084 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807084 3367_ $$2DRIVER$$aarticle
000807084 520__ $$aINTRODUCTIONThe reproducibility of results is one of the underlying principles of science. An observation can only be accepted by the scientific community when it can be confirmed by independent studies. However, reproducibility does not come easily. Recent works have painfully exposed cases where previous conclusions were not upheld. The scrutiny of the scientific community has also turned to research involving computer programs, finding that reproducibility depends more strongly on implementation than commonly thought. These problems are especially relevant for property predictions of crystals and molecules, which hinge on precise computer implementations of the governing equation of quantum physics.RATIONALEThis work focuses on density functional theory (DFT), a particularly popular quantum method for both academic and industrial applications. More than 15,000 DFT papers are published each year, and DFT is now increasingly used in an automated fashion to build large databases or apply multiscale techniques with limited human supervision. Therefore, the reproducibility of DFT results underlies the scientific credibility of a substantial fraction of current work in the natural and engineering sciences. A plethora of DFT computer codes are available, many of them differing considerably in their details of implementation, and each yielding a certain “precision” relative to other codes. How is one to decide for more than a few simple cases which code predicts the correct result, and which does not? We devised a procedure to assess the precision of DFT methods and used this to demonstrate reproducibility among many of the most widely used DFT codes. The essential part of this assessment is a pairwise comparison of a wide range of methods with respect to their predictions of the equations of state of the elemental crystals. This effort required the combined expertise of a large group of code developers and expert users.RESULTSWe calculated equation-of-state data for four classes of DFT implementations, totaling 40 methods. Most codes agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Even in the case of pseudization approaches, which largely depend on the atomic potentials used, a similar precision can be obtained as when using the full potential. The remaining deviations are due to subtle effects, such as specific numerical implementations or the treatment of relativistic terms.CONCLUSIONOur work demonstrates that the precision of DFT implementations can be determined, even in the absence of one absolute reference code. Although this was not the case 5 to 10 years ago, most of the commonly used codes and methods are now found to predict essentially identical results. The established precision of DFT codes not only ensures the reproducibility of DFT predictions but also puts several past and future developments on a firmer footing. Any newly developed methodology can now be tested against the benchmark to verify whether it reaches the same level of precision. New DFT applications can be shown to have used a sufficiently precise method. Moreover, high-precision DFT calculations are essential for developing improvements to DFT methodology, such as new density functionals, which may further increase the predictive power of the simulations.
000807084 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000807084 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000807084 588__ $$aDataset connected to CrossRef
000807084 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b1$$ufzj
000807084 7001_ $$0P:(DE-HGF)0$$aBjorkman, T.$$b2
000807084 7001_ $$0P:(DE-HGF)0$$aBlaha, P.$$b3
000807084 7001_ $$0P:(DE-Juel1)130548$$aBlugel, S.$$b4$$ufzj
000807084 7001_ $$0P:(DE-HGF)0$$aBlum, V.$$b5
000807084 7001_ $$0P:(DE-HGF)0$$aCaliste, D.$$b6
000807084 7001_ $$0P:(DE-HGF)0$$aCastelli, I. E.$$b7
000807084 7001_ $$0P:(DE-HGF)0$$aClark, S. J.$$b8
000807084 7001_ $$0P:(DE-HGF)0$$aDal Corso, A.$$b9
000807084 7001_ $$0P:(DE-HGF)0$$ade Gironcoli, S.$$b10
000807084 7001_ $$0P:(DE-HGF)0$$aDeutsch, T.$$b11
000807084 7001_ $$0P:(DE-HGF)0$$aDewhurst, J. K.$$b12
000807084 7001_ $$0P:(DE-HGF)0$$aDi Marco, I.$$b13
000807084 7001_ $$0P:(DE-HGF)0$$aDraxl, C.$$b14
000807084 7001_ $$0P:(DE-HGF)0$$aDu ak, M.$$b15
000807084 7001_ $$0P:(DE-HGF)0$$aEriksson, O.$$b16
000807084 7001_ $$0P:(DE-HGF)0$$aFlores-Livas, J. A.$$b17
000807084 7001_ $$0P:(DE-HGF)0$$aGarrity, K. F.$$b18
000807084 7001_ $$0P:(DE-HGF)0$$aGenovese, L.$$b19
000807084 7001_ $$0P:(DE-HGF)0$$aGiannozzi, P.$$b20
000807084 7001_ $$0P:(DE-HGF)0$$aGiantomassi, M.$$b21
000807084 7001_ $$0P:(DE-HGF)0$$aGoedecker, S.$$b22
000807084 7001_ $$0P:(DE-HGF)0$$aGonze, X.$$b23
000807084 7001_ $$0P:(DE-HGF)0$$aGranas, O.$$b24
000807084 7001_ $$0P:(DE-HGF)0$$aGross, E. K. U.$$b25
000807084 7001_ $$0P:(DE-HGF)0$$aGulans, A.$$b26
000807084 7001_ $$0P:(DE-HGF)0$$aGygi, F.$$b27
000807084 7001_ $$0P:(DE-HGF)0$$aHamann, D. R.$$b28
000807084 7001_ $$0P:(DE-HGF)0$$aHasnip, P. J.$$b29
000807084 7001_ $$0P:(DE-HGF)0$$aHolzwarth, N. A. W.$$b30
000807084 7001_ $$0P:(DE-HGF)0$$aIu an, D.$$b31
000807084 7001_ $$0P:(DE-HGF)0$$aJochym, D. B.$$b32
000807084 7001_ $$0P:(DE-HGF)0$$aJollet, F.$$b33
000807084 7001_ $$0P:(DE-HGF)0$$aJones, D.$$b34
000807084 7001_ $$0P:(DE-HGF)0$$aKresse, G.$$b35
000807084 7001_ $$0P:(DE-HGF)0$$aKoepernik, K.$$b36
000807084 7001_ $$0P:(DE-HGF)0$$aKucukbenli, E.$$b37
000807084 7001_ $$0P:(DE-HGF)0$$aKvashnin, Y. O.$$b38
000807084 7001_ $$0P:(DE-HGF)0$$aLocht, I. L. M.$$b39
000807084 7001_ $$0P:(DE-HGF)0$$aLubeck, S.$$b40
000807084 7001_ $$0P:(DE-HGF)0$$aMarsman, M.$$b41
000807084 7001_ $$0P:(DE-HGF)0$$aMarzari, N.$$b42
000807084 7001_ $$0P:(DE-HGF)0$$aNitzsche, U.$$b43
000807084 7001_ $$0P:(DE-HGF)0$$aNordstrom, L.$$b44
000807084 7001_ $$0P:(DE-HGF)0$$aOzaki, T.$$b45
000807084 7001_ $$0P:(DE-HGF)0$$aPaulatto, L.$$b46
000807084 7001_ $$0P:(DE-HGF)0$$aPickard, C. J.$$b47
000807084 7001_ $$0P:(DE-HGF)0$$aPoelmans, W.$$b48
000807084 7001_ $$0P:(DE-HGF)0$$aProbert, M. I. J.$$b49
000807084 7001_ $$0P:(DE-HGF)0$$aRefson, K.$$b50
000807084 7001_ $$0P:(DE-HGF)0$$aRichter, M.$$b51
000807084 7001_ $$0P:(DE-HGF)0$$aRignanese, G.-M.$$b52
000807084 7001_ $$0P:(DE-HGF)0$$aSaha, S.$$b53
000807084 7001_ $$0P:(DE-HGF)0$$aScheffler, M.$$b54
000807084 7001_ $$0P:(DE-Juel1)130941$$aSchlipf, M.$$b55
000807084 7001_ $$0P:(DE-HGF)0$$aSchwarz, K.$$b56
000807084 7001_ $$0P:(DE-HGF)0$$aSharma, S.$$b57
000807084 7001_ $$0P:(DE-HGF)0$$aTavazza, F.$$b58
000807084 7001_ $$0P:(DE-HGF)0$$aThunstrom, P.$$b59
000807084 7001_ $$0P:(DE-HGF)0$$aTkatchenko, A.$$b60
000807084 7001_ $$0P:(DE-HGF)0$$aTorrent, M.$$b61
000807084 7001_ $$0P:(DE-HGF)0$$aVanderbilt, D.$$b62
000807084 7001_ $$0P:(DE-HGF)0$$avan Setten, M. J.$$b63
000807084 7001_ $$0P:(DE-HGF)0$$aVan Speybroeck, V.$$b64
000807084 7001_ $$0P:(DE-HGF)0$$aWills, J. M.$$b65
000807084 7001_ $$0P:(DE-HGF)0$$aYates, J. R.$$b66
000807084 7001_ $$0P:(DE-HGF)0$$aZhang, G.-X.$$b67
000807084 7001_ $$0P:(DE-HGF)0$$aCottenier, S.$$b68
000807084 773__ $$0PERI:(DE-600)2066996-3$$a10.1126/science.aad3000$$gVol. 351, no. 6280, p. aad3000 - aad3000$$p6280$$tScience$$v351$$x1095-9203$$y2016
000807084 8564_ $$uhttps://juser.fz-juelich.de/record/807084/files/aad3000.full.pdf$$yRestricted
000807084 8564_ $$uhttps://juser.fz-juelich.de/record/807084/files/aad3000.full.gif?subformat=icon$$xicon$$yRestricted
000807084 8564_ $$uhttps://juser.fz-juelich.de/record/807084/files/aad3000.full.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000807084 8564_ $$uhttps://juser.fz-juelich.de/record/807084/files/aad3000.full.jpg?subformat=icon-180$$xicon-180$$yRestricted
000807084 8564_ $$uhttps://juser.fz-juelich.de/record/807084/files/aad3000.full.jpg?subformat=icon-640$$xicon-640$$yRestricted
000807084 8564_ $$uhttps://juser.fz-juelich.de/record/807084/files/aad3000.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000807084 909CO $$ooai:juser.fz-juelich.de:807084$$pVDB
000807084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000807084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000807084 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000807084 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000807084 9141_ $$y2016
000807084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807084 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000807084 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000807084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCIENCE : 2014
000807084 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bSCIENCE : 2014
000807084 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000807084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807084 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000807084 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807084 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000807084 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000807084 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000807084 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000807084 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000807084 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807084 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000807084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807084 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000807084 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000807084 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000807084 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000807084 980__ $$ajournal
000807084 980__ $$aVDB
000807084 980__ $$aUNRESTRICTED
000807084 980__ $$aI:(DE-Juel1)IAS-1-20090406
000807084 980__ $$aI:(DE-Juel1)PGI-1-20110106
000807084 980__ $$aI:(DE-82)080012_20140620
000807084 980__ $$aI:(DE-82)080009_20140620
000807084 981__ $$aI:(DE-Juel1)PGI-1-20110106