001     807084
005     20210129222651.0
024 7 _ |a 10.1126/science.aad3000
|2 doi
024 7 _ |a 0036-8075
|2 ISSN
024 7 _ |a 1095-9203
|2 ISSN
024 7 _ |a WOS:000372756200038
|2 WOS
024 7 _ |a altmetric:6319751
|2 altmetric
024 7 _ |a pmid:27013736
|2 pmid
037 _ _ |a FZJ-2016-02113
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Lejaeghere, K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Reproducibility in density functional theory calculations of solids
260 _ _ |a Washington, DC [u.a.]
|c 2016
|b American Association for the Advancement of Science64196
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1459760714_5281
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a INTRODUCTIONThe reproducibility of results is one of the underlying principles of science. An observation can only be accepted by the scientific community when it can be confirmed by independent studies. However, reproducibility does not come easily. Recent works have painfully exposed cases where previous conclusions were not upheld. The scrutiny of the scientific community has also turned to research involving computer programs, finding that reproducibility depends more strongly on implementation than commonly thought. These problems are especially relevant for property predictions of crystals and molecules, which hinge on precise computer implementations of the governing equation of quantum physics.RATIONALEThis work focuses on density functional theory (DFT), a particularly popular quantum method for both academic and industrial applications. More than 15,000 DFT papers are published each year, and DFT is now increasingly used in an automated fashion to build large databases or apply multiscale techniques with limited human supervision. Therefore, the reproducibility of DFT results underlies the scientific credibility of a substantial fraction of current work in the natural and engineering sciences. A plethora of DFT computer codes are available, many of them differing considerably in their details of implementation, and each yielding a certain “precision” relative to other codes. How is one to decide for more than a few simple cases which code predicts the correct result, and which does not? We devised a procedure to assess the precision of DFT methods and used this to demonstrate reproducibility among many of the most widely used DFT codes. The essential part of this assessment is a pairwise comparison of a wide range of methods with respect to their predictions of the equations of state of the elemental crystals. This effort required the combined expertise of a large group of code developers and expert users.RESULTSWe calculated equation-of-state data for four classes of DFT implementations, totaling 40 methods. Most codes agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Even in the case of pseudization approaches, which largely depend on the atomic potentials used, a similar precision can be obtained as when using the full potential. The remaining deviations are due to subtle effects, such as specific numerical implementations or the treatment of relativistic terms.CONCLUSIONOur work demonstrates that the precision of DFT implementations can be determined, even in the absence of one absolute reference code. Although this was not the case 5 to 10 years ago, most of the commonly used codes and methods are now found to predict essentially identical results. The established precision of DFT codes not only ensures the reproducibility of DFT predictions but also puts several past and future developments on a firmer footing. Any newly developed methodology can now be tested against the benchmark to verify whether it reaches the same level of precision. New DFT applications can be shown to have used a sufficiently precise method. Moreover, high-precision DFT calculations are essential for developing improvements to DFT methodology, such as new density functionals, which may further increase the predictive power of the simulations.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 1
|u fzj
700 1 _ |a Bjorkman, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Blaha, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Blugel, S.
|0 P:(DE-Juel1)130548
|b 4
|u fzj
700 1 _ |a Blum, V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Caliste, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Castelli, I. E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Clark, S. J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dal Corso, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a de Gironcoli, S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Deutsch, T.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Dewhurst, J. K.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Di Marco, I.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Draxl, C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Du ak, M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Eriksson, O.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Flores-Livas, J. A.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Garrity, K. F.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Genovese, L.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Giannozzi, P.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Giantomassi, M.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Goedecker, S.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Gonze, X.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Granas, O.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Gross, E. K. U.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Gulans, A.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Gygi, F.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Hamann, D. R.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Hasnip, P. J.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Holzwarth, N. A. W.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Iu an, D.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Jochym, D. B.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Jollet, F.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Jones, D.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Kresse, G.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Koepernik, K.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Kucukbenli, E.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Kvashnin, Y. O.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Locht, I. L. M.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Lubeck, S.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Marsman, M.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Marzari, N.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Nitzsche, U.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Nordstrom, L.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Ozaki, T.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Paulatto, L.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Pickard, C. J.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Poelmans, W.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Probert, M. I. J.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Refson, K.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Richter, M.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Rignanese, G.-M.
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Saha, S.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Scheffler, M.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Schlipf, M.
|0 P:(DE-Juel1)130941
|b 55
700 1 _ |a Schwarz, K.
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Sharma, S.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Tavazza, F.
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Thunstrom, P.
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Tkatchenko, A.
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Torrent, M.
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Vanderbilt, D.
|0 P:(DE-HGF)0
|b 62
700 1 _ |a van Setten, M. J.
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Van Speybroeck, V.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Wills, J. M.
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Yates, J. R.
|0 P:(DE-HGF)0
|b 66
700 1 _ |a Zhang, G.-X.
|0 P:(DE-HGF)0
|b 67
700 1 _ |a Cottenier, S.
|0 P:(DE-HGF)0
|b 68
773 _ _ |a 10.1126/science.aad3000
|g Vol. 351, no. 6280, p. aad3000 - aad3000
|0 PERI:(DE-600)2066996-3
|p 6280
|t Science
|v 351
|y 2016
|x 1095-9203
856 4 _ |u https://juser.fz-juelich.de/record/807084/files/aad3000.full.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/807084/files/aad3000.full.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/807084/files/aad3000.full.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/807084/files/aad3000.full.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/807084/files/aad3000.full.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/807084/files/aad3000.full.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:807084
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCIENCE : 2014
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b SCIENCE : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21