001 | 807104 | ||
005 | 20250129094202.0 | ||
024 | 7 | _ | |a 10.1016/j.physe.2015.11.033 |2 doi |
024 | 7 | _ | |a 1386-9477 |2 ISSN |
024 | 7 | _ | |a 1873-1759 |2 ISSN |
024 | 7 | _ | |a WOS:000367534300009 |2 WOS |
024 | 7 | _ | |a altmetric:7118963 |2 altmetric |
037 | _ | _ | |a FZJ-2016-02124 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kakulia, D. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Density of quantum states in quasi-1D layers |
260 | _ | _ | |a Amsterdam [u.a.] |c 2016 |b North-Holland, Elsevier Science |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1459430087_25485 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Recently, new quantum effects have been studied in thin nanograting layers. Nanograting on the surface imposes additional boundary conditions on the electron wave function and reduces the density of states (DOS). When the nanograting dimensions are close to the de Broglie wavelength, the DOS reduction is considerable and leads to changes in the layer properties. DOS calculations are challenging to perform and are related to the quantum billiard problem. Performing such calculations requires finding the solutions for the time-independent Schrödinger equation with Dirichlet boundary conditions. Here, we use a numerical method, namely the Method of Auxiliary Sources, which offers significant computational cost reduction relative to other numerical methods. We found the first five eigenfunctions for the nanograting layer and compared them with the corresponding eigenfunctions for a plain layer by calculating the correlation coefficients. Furthermore, the numerical data were used to analyze the DOS reduction. The nanograting is shown to reduce the probability of occupation of a particular quantum state, reducing the integrated DOS by as much as 4.1-fold. This reduction in the DOS leads to considerable changes in the electronic properties. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 1 |
536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 2 |
536 | _ | _ | |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) |0 G:(DE-HGF)POF3-6213 |c POF3-621 |f POF III |x 3 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Tavkhelidze, A. |0 P:(DE-Juel1)159439 |b 1 |e Corresponding author |
700 | 1 | _ | |a Gogoberidze, V. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mebonia, M. |0 P:(DE-Juel1)162378 |b 3 |
773 | _ | _ | |a 10.1016/j.physe.2015.11.033 |g Vol. 78, p. 49 - 55 |0 PERI:(DE-600)1466595-5 |p 49 - 55 |t Physica / E |v 78 |y 2016 |x 1386-9477 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/807104/files/1-s2.0-S1386947715302988-main.pdf |y Restricted |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/807104/files/1-s2.0-S1386947715302988-main.gif?subformat=icon |y Restricted |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/807104/files/1-s2.0-S1386947715302988-main.jpg?subformat=icon-1440 |y Restricted |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/807104/files/1-s2.0-S1386947715302988-main.jpg?subformat=icon-180 |y Restricted |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/807104/files/1-s2.0-S1386947715302988-main.jpg?subformat=icon-640 |y Restricted |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/807104/files/1-s2.0-S1386947715302988-main.pdf?subformat=pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:807104 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)162378 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6213 |x 3 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 4 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYSICA E : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
981 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|