001     807648
005     20240711085601.0
024 7 _ |a 10.2109/jcersj2.15275
|2 doi
024 7 _ |a 0914-5400
|2 ISSN
024 7 _ |a 1348-6535
|2 ISSN
024 7 _ |a 1882-0743
|2 ISSN
024 7 _ |a 1882-1022
|2 ISSN
024 7 _ |a 2128/10071
|2 Handle
024 7 _ |a WOS:000379610100023
|2 WOS
037 _ _ |a FZJ-2016-02135
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a OKUMA, Gaku
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Determination of the size of representative volume element for viscous sintering
260 _ _ |a Tokyo
|c 2016
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1459761294_5282
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The representative volume element (RVE) is a basic concept in the continuum mechanics of sintering of random heterogeneous porous materials. A quantitative determination of its size was performed by using synchrotron X-ray microtomography data of constrained sintering of thin glass film on a rigid substrate. A RVE size is associated with a property of interest; we determined it for relative density, specific surface area, and hydrostatic component of sintering stress. The RVE size was estimated to be from 11 to 17 times larger than the average initial particle size. The RVE size was associated with a given precision of the property. It depended on the volume fraction of porous structure, or, relative density, so that it varied with microstructural evolution.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a KADOWAKI, Daiki
|0 P:(DE-HGF)0
|b 1
700 1 _ |a SHINODA, Yutaka
|0 P:(DE-HGF)0
|b 2
700 1 _ |a AKATSU, Takashi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
700 1 _ |a WAKAI, Fumihiro
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.2109/jcersj2.15275
|g Vol. 124, no. 4, p. 421 - 425
|0 PERI:(DE-600)2135543-5
|n 4
|p 421 - 425
|t Journal of the Ceramic Society of Japan
|v 124
|y 2016
|x 1348-6535
856 4 _ |u https://juser.fz-juelich.de/record/807648/files/124_15275.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:807648
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CERAM SOC JPN : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21