000807653 001__ 807653
000807653 005__ 20220930130058.0
000807653 0247_ $$2doi$$a10.1103/PhysRevLett.116.126805
000807653 0247_ $$2ISSN$$a0031-9007
000807653 0247_ $$2ISSN$$a1079-7114
000807653 0247_ $$2Handle$$a2128/10074
000807653 0247_ $$2WOS$$aWOS:000372729200014
000807653 0247_ $$2altmetric$$aaltmetric:6370253
000807653 0247_ $$2pmid$$apmid:27058093
000807653 037__ $$aFZJ-2016-02139
000807653 082__ $$a550
000807653 1001_ $$0P:(DE-Juel1)157982$$aSforzini, J.$$b0
000807653 245__ $$aStructural and Electronic Properties of Nitrogen-Doped Graphene
000807653 260__ $$aCollege Park, Md.$$bAPS$$c2016
000807653 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459858452_9666
000807653 3367_ $$2DataCite$$aOutput Types/Journal article
000807653 3367_ $$00$$2EndNote$$aJournal Article
000807653 3367_ $$2BibTeX$$aARTICLE
000807653 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807653 3367_ $$2DRIVER$$aarticle
000807653 520__ $$aWe investigate the structural and electronic properties of nitrogen-doped epitaxial monolayer graphene and quasifreestanding monolayer graphene on 6H−SiC(0001) by the normal incidence x-ray standing wave technique and by angle-resolved photoelectron spectroscopy supported by density functional theory simulations. With the location of various nitrogen species uniquely identified, we observe that for the same doping procedure, the graphene support, consisting of substrate and interface, strongly influences the structural as well as the electronic properties of the resulting doped graphene layer. Compared to epitaxial graphene, quasifreestanding graphene is found to contain fewer nitrogen dopants. However, this lack of dopants is compensated by the proximity of nitrogen atoms at the interface that yield a similar number of charge carriers in graphene.
000807653 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000807653 588__ $$aDataset connected to CrossRef
000807653 7001_ $$0P:(DE-HGF)0$$aHapala, P.$$b1
000807653 7001_ $$0P:(DE-Juel1)161374$$aFranke, M.$$b2$$ufzj
000807653 7001_ $$0P:(DE-Juel1)161411$$avan Straaten, G.$$b3$$ufzj
000807653 7001_ $$0P:(DE-HGF)0$$aStöhr, A.$$b4
000807653 7001_ $$0P:(DE-HGF)0$$aLink, S.$$b5
000807653 7001_ $$0P:(DE-HGF)0$$aSoubatch, S.$$b6
000807653 7001_ $$0P:(DE-HGF)0$$aJelínek, P.$$b7
000807653 7001_ $$0P:(DE-HGF)0$$aLee, T.-L.$$b8
000807653 7001_ $$0P:(DE-HGF)0$$aStarke, U.$$b9
000807653 7001_ $$0P:(DE-HGF)0$$aŠvec, M.$$b10
000807653 7001_ $$0P:(DE-HGF)0$$aBocquet, F. C.$$b11$$eCorresponding author
000807653 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b12$$ufzj
000807653 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.116.126805$$gVol. 116, no. 12, p. 126805$$n12$$p126805$$tPhysical review letters$$v116$$x1079-7114$$y2016
000807653 8564_ $$uhttps://juser.fz-juelich.de/record/807653/files/PhysRevLett.116.126805.pdf$$yOpenAccess
000807653 8564_ $$uhttps://juser.fz-juelich.de/record/807653/files/PhysRevLett.116.126805.gif?subformat=icon$$xicon$$yOpenAccess
000807653 8564_ $$uhttps://juser.fz-juelich.de/record/807653/files/PhysRevLett.116.126805.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000807653 8564_ $$uhttps://juser.fz-juelich.de/record/807653/files/PhysRevLett.116.126805.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000807653 8564_ $$uhttps://juser.fz-juelich.de/record/807653/files/PhysRevLett.116.126805.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000807653 8564_ $$uhttps://juser.fz-juelich.de/record/807653/files/PhysRevLett.116.126805.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000807653 8767_ $$8RLNK501866355$$92016-02-23$$d2016-02-24$$eHybrid-OA$$jZahlung erfolgt$$pLG15903
000807653 909CO $$ooai:juser.fz-juelich.de:807653$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000807653 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000807653 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807653 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000807653 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000807653 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807653 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000807653 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807653 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000807653 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000807653 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000807653 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807653 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807653 9141_ $$y2016
000807653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157982$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000807653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161374$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000807653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161411$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000807653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000807653 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000807653 920__ $$lyes
000807653 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000807653 9801_ $$aUNRESTRICTED
000807653 9801_ $$aFullTexts
000807653 980__ $$ajournal
000807653 980__ $$aVDB
000807653 980__ $$aUNRESTRICTED
000807653 980__ $$aI:(DE-Juel1)PGI-3-20110106
000807653 980__ $$aAPC