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Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation

in transition metals from ab initio theory
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Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
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The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied

by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the

spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012)]. We analyze in detail the

origin of the gigantic anisotropy in 5d hcp metals as compared to 5d cubic metals by band structure calculations

and discuss the stability of our results against an applied magnetic field. We further present calculations of light

(4d and 3d) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large

as 6000% in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes

the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed

an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and

accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function

method.
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I. INTRODUCTION

The Fermi surface (FS) is of special importance for many

properties of metals [1]. The low-energy transitions between

occupied and unoccupied states close to the Fermi energy

govern electronic [2,3] and spin-transport properties [4], as

well as response functions and their instabilities. Moreover, the

Fermi surface takes a special role for quasiparticle excitations

in Landau Fermi-liquid theory, as their lifetime tends towards

infinity as the energy approaches the Fermi level [5]. Purely

the area of the Fermi surface already influences the density

of states, and thus determines the low-temperature specific

heat, as well as the ferromagnetic instability through the

Stoner criterion. Some more important physical effects are

determined merely by the shape of the FS. For example,

the extremal orbits of the Fermi surface determine the de

Haas–van Alphen oscillations [6]. The Fermi wave vector

directly influences the period of Friedel oscillations and the

Ruderman–Kittel–Kasuya–Yosida-type exchange interaction.

Some more advanced properties of the Fermi surface originate

from nesting and have ramifications in charge- or spin-

density waves [7,8], the shape memory effect [9], a focusing

effect of Friedel oscillations around impurities [10,11], or

superconductivity [12].

The shape of a Fermi surface can vary from a simple sphere

for a homogeneous electron gas up to very complex shapes,

which is especially the case for transition-metal elements

due to the presence of dense d-electron bands at the Fermi

level [13]. They often exhibit many intertwined sheets and

possible crossings or anticrossings (corresponding, respec-

tively, to degenerate electron states or lifted degeneracies

in the band structure). The lifting of these degeneracies is

frequently caused by spin-orbit coupling (SOC) [14], and

the precise determination of resulting small anticrossings of

Fermi-surface sheets is often crucial for the correct description

of spin-orbit effects in metals.

*be.zimmermann@fz-juelich.de

Spin-orbit coupling manifests itself in various effects

of high fundamental and technological relevance, including

anisotropy effects and spin-dependent transport phenomena.

The former class includes the magnetocrystalline anisotropy

energy (MAE) and anisotropic magnetoresistance (AMR).

Examples for the latter are the anomalous as well as the direct

and inverse spin Hall effects (AHE, SHE, and ISHE) [15–19],

which lie at the heart of modern spintronics for spin-current

creation and detection. Moreover, the important phenomenon

of spin relaxation determines the time scale on which an

excited spin population, which is for example created by an

injected spin-polarized current, equilibrates, and is therefore a

crucial parameter for the design of spintronic devices.

Evidently, a sufficiently long spin-relaxation time T1 is

required if information encoded in the orientation of the

electron spin shall be transported across a device by means

of a spin-polarized current because this current has basically

decayed after this time [4]. On the other hand, a short spin-

relaxation time may be required in ultrafast demagnetization

dynamics [20], where an excited spin population (e.g., by

means of a laser) is used to transfer energy quickly into other

degrees of freedom, e.g., into the lattice by electron-phonon

coupling. Usually, for the two limiting cases of long or short

T1, two different materials are needed. However, recently a

novel anisotropy of spin relaxation as a function of the spin

direction of the spin population was discovered [21]. This

anisotropy can be gigantic (as large as 830% in Hf), and allows

for an adjustment of the spin-relaxation time within the same

material, just by changing the polarization direction of the

excited spin population.

From a numerical point of view, the accurate determination

of complex Fermi surfaces and the precise calculation of

Fermi-surface integrals represent a true challenge. A widely

used concept of dividing the irreducible Brillouin zone into

tetrahedra and interpolating the integrand by a linear function

(linear tetrahedron method) was first proposed by Lehmann

and Taut [22], and refinements have led to higher computa-

tional efficiency and accuracy [23,24]. Like most integration

methods for the reciprocal space, these formulations rely on

2469-9950/2016/93(14)/144403(15) 144403-1 ©2016 American Physical Society



BERND ZIMMERMANN et al. PHYSICAL REVIEW B 93, 144403 (2016)

the knowledge of band energies ǫi(k) at the vertices of the

tetrahedra (with the Bloch vector k and band index i; see [25]

for an overview). However, in the Korringa-Kohn-Rostoker

Green function (KKR-GF) method, which has many advan-

tages over basis-set-based methods (e.g., for the inclusion of

disorder, scattering properties and corresponding transition

rates [3,26–29]), the band structure is given by an implicit

relation between ǫi and k. An adapted method is needed for

the KKR formalism, which relies on the search for roots

of the KKR-matrix eigenvalues λi(k,ǫ) = 0. It was initially

formulated for the atomic sphere approximation (ASA) and

on a tetrahedral mesh by Zahn [30]. However, complications

arise from the inclusion of nonspherical parts into the potential.

The full-potential treatment becomes especially important for

surfaces and layered systems, as well as in magnetic bulk

crystals with spin-orbit coupling.

In this paper, we begin by presenting a robust method for

calculating the Fermi surface based on an adapted tetrahedron

method within the relativistic full-potential KKR-GF formal-

ism, which enables the determination of Fermi surfaces of most

complicated shape. We apply our method to the calculation

of Fermi surfaces and the Elliott-Yafet spin-mixing parameter

(EYP) in elemental nonmagnetic metals. We find a surprisingly

high anisotropy of the EYP in uniaxial hcp crystals, which can

reach gigantic values as large as 830% among 5d metals with

strong spin-orbit coupling, as opposed to usually less than

1% in 5d cubic crystals. Through a band-structure analysis,

we trace this qualitative difference back to the emergence

of very anisotropic spin-flip hot loops, which are supported

through the nonsymmorphic space group of the hcp-crystal

structure. We carefully investigate the effect of an external

magnetic field on the spin-flip hot loops, and estimate the

stability of the EYP anisotropy. We furthermore consider

3d and 4d nonmagnetic elemental metals with hcp-crystal

structure, where spin-orbit coupling is much weaker compared

to 5d metals. We find a huge increase of the EYP anisotropies,

reaching a colossal value as large as 6000% for hcp Ti. We

attribute this nonintuitive behavior to a different scaling of

the spin-mixing parameter with respect to the atomic number

between ordinary regions and spin-flip hot regions on the Fermi

surface.

The paper is organized as follows: We first shortly review

in Sec. II the basics of Elliott-Yafet theory, followed by a

description of our developed Fermi-surface method within

the KKR method in Sec. III. The successful application of

our method to various nonmagnetic elemental metals and the

investigation of the spin-mixing parameter is presented in

Sec. IV, followed by conclusions in Sec. V. In the Appendix,

we discuss the possible ways of lifting the conjugation

degeneracy and their physical interpretation.

II. ELLIOTT APPROXIMATION TO SPIN RELAXATION

AND ITS ANISOTROPY

In this section, we give a summary of previously known

theoretical concepts in order to make the paper reasonably

self-contained and to define some of the quantities used later.

The summary also serves as an introduction to the discussion

on the physical interpretation of different ways of lifting the

conjugation degeneracy, discussed in the Appendix.

One distinguishes different microscopic mechanisms caus-

ing spin relaxation. We focus on the Elliott-Yafet mechanism,

which is the dominant one in crystals with space-inversion

and time-reversal symmetries, as present in the nonmagnetic

elemental metals that we investigate in Sec. IV. For complete-

ness, we mention that the Elliott-Yafet theory was also applied

to ferromagnets [20,31].

In the Elliott-Yafet theory, the equilibration of an excited

spin population in a nonmagnetic metal occurs due to spin-

flip events during scattering, which can take place, e.g., off

impurities or phonons. The theory is based on the effect of

spin-orbit coupling on the Bloch eigenstates of the crystal

Hamiltonian. According to Elliott [32], the Bloch states are

not of pure spin character, but necessarily form superpositions

of spin up and spin down, written as

�+
kŝ(r) = [akŝ(r)|↑〉ŝ + bkŝ(r)|↓〉ŝ]e

ik·r , (1)

�−
kŝ(r) = [a∗

−kŝ(r)|↓〉ŝ − b∗
−kŝ(r)|↑〉ŝ]e

ik·r . (2)

The first equation expresses the Bloch eigenstate �+
kŝ(r) in the

spin basis (|↑〉ŝ,|↓〉ŝ) of eigenstates of the Pauli spin operator

σ P = (σ P
x ,σ P

y ,σ P
z ) along a certain spin-quantization axis ŝ, i.e.,

eigenstates of the operator σ P · ŝ. Usually, one chooses ŝ along

the z axis, but in this work we will allow ŝ to vary, exploring

the spin-relaxation anisotropy. akŝ(r) and bkŝ(r) are the lattice-

periodic parts of the Bloch function. Equation (2) follows from

Eq. (1) in the presence of combined time-reversal (absence

of magnetic fields) and space-inversion symmetries, and the

degeneracy in E and k implied by Eqs. (1) and (2) is called

conjugation degeneracy, following Yafet [33]. Then, �+
kŝ and

�−
kŝ = P K �+

kŝ form a conjugate pair, where P is the space-

inversion and K is the time-reversal operator (see Appendix).

Defining the spin-expectation value of �±
kŝ along ŝ as

S±
kŝ :=

�

2
〈�±

kŝ |σ P · ŝ| �±
kŝ 〉, (3)

we have S−
kŝ = −S+

kŝ . Due to the conjugation degeneracy, the

crystal Hamiltonian together with the translational operator

can only define the subspace spanned by �±
kŝ , and an

additional condition is used to uniquely determine each state:

one demands that S+
kŝ is maximal (this choice is physically

motivated but not the only possible one; see the Appendix)

and in this way akŝ and bkŝ are uniquely defined up to an

arbitrary global phase.

Following Fabian [34], we define the volume integral over

the coefficients as b2
kŝ =

∫

|bkŝ(r)|2d r (and equivalently for

a2
kŝ). For the coefficients we have by normalization a2

kŝ + b2
kŝ =

1 and by definition a2
kŝ � b2

kŝ , thus the spin-mixing parameter

b2
kŝ determines the amount of spin-down character “mixed” in

a predominantly spin-up state. Obviously,

S+
kŝ =

�

2

(

1 − 2b2
kŝ

)

. (4)

In Elliott’s equation for the spin-relaxation time, the Fermi-

surface (FS) averaged spin-mixing, or Elliott-Yafet, parameter

enters. It is given by

b2
ŝ =

1

n(EF)

1

�

∫

FS

b2
kŝ

|vF(k)|
dS, (5)
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where vF(k) is the Fermi velocity. The normalization

by the density of states at the Fermi level, n(EF ) =

(1/�)
∫

FS
|vF(k)|−1dS, ensures that 0 � b2

ŝ � 0.5. Since the

value of b2
ŝ depends on the choice of ŝ (as has been shown

before for several types of systems [21,35–38] and as we

discuss in this paper), we may introduce the anisotropy that b2
ŝ

shows with respect to all possible choices of ŝ:

A[b2] =
maxŝ b2

ŝ − minŝ b2
ŝ

minŝ b2
ŝ

. (6)

The anisotropy concept can be summarized like this: if the

functions ak and bk are first chosen to maximize S+
k along ŝ,

and then are chosen to maximize S+
k along another axis ŝ ′,

then the two values of S+
k will be in general different unless ŝ

and ŝ ′ are symmetry related by the crystal structure.

The central ansatz of the Elliott-Yafet theory is that

electrons beyond spin equilibrium populate �+
kŝ states, while

scattering from �+
kŝ to �−

k′ ŝ
produces spin flips, eventually

restoring equilibrium. The practical importance of b2
ŝ and

A[b2] becomes clear when considering the Elliott approxi-

mation [32] that relates b2
ŝ to the ratio of the spin-relaxation

time T1 and momentum relaxation time τ ,

τ

T1

= p b2
ŝ (7)

with a proportionality constant p of order one. Here, 1/T1

represents the spin-flip transition rate averaged over the Fermi

surface, while 1/τ represents the total (spin-conserving plus

spin-flip) decay rate averaged over the Fermi surface, both due

to scattering. 1/τ shows no anisotropy with respect to ŝ. Thus,

through the anisotropy of b2
ŝ , an anisotropy of spin-relaxation

time is induced [21], corresponding to different values of T1

depending on the spin direction of the injected electrons in a

material:

A[T1] =
maxŝ T1(ŝ) − minŝ T1(ŝ)

minŝ T1(ŝ)
. (8)

Interestingly, A[b2] stems from the band structure alone

because no specific assumptions on the scattering potential are

made in the derivation of the Elliott approximation. Explicit

calculations of self-adatom impurities on metallic films, where

all details of the scattering potential have been included

[38], have shown that the anisotropy A[T1] is in many cases

qualitatively well described by the lowest-order approximation

A[b2] alone.

The spin-mixing parameter is usually small (b2
kŝ ≪ 0.5),

but may reach the maximal value of 0.5 for special points in

the band structure (called spin-flip hot spots) [34]. For a deeper

analysis of the origin of the spin-flip hot spots, it is insightful

to divide the spin-orbit operator into a spin-conserving part

ξ (LS‖) and a spin-flip part ξ (LS↑↓) given, respectively, by the

first and second parts on the right-hand side of the following

expression:

ξ L · S = ξLŝSŝ + ξ
(

L+
ŝ S−

ŝ + L−
ŝ S+

ŝ

)

/2 . (9)

Here, ξ (r) is the spin-orbit coupling strength, L and S = �

2
σ P

are, respectively, the orbital and spin angular momentum

operators Lŝ = L · ŝ, Sŝ = S · ŝ, and L±
ŝ and S±

ŝ are the

corresponding raising and lowering operators for orbital and

spin angular-momentum, respectively, in the reference frame

specified by ŝ. It is clear that the dot product L · S is

independent of ŝ, leaving the eigenenergies of the Hamiltonian

invariant. However, the matrix elements of the spin-conserving

and spin-flip parts, respectively, depend on the choice of the

spin-quantization axis (SQA). Evidently, only the spin-flip part

of SOC causes a spin mixing of the Bloch states as it has

off-diagonal components as a matrix in spin space, and the

spin-conserving part is a diagonal matrix in spin space.

III. METHOD

A. KKR band structure formalism

1. Band structure

To calculate the electronic band structure of crystals,

we employ density functional theory (DFT) in the local

density approximation (LDA). Before we turn to the details

of the tetrahedron method, we recall the basic equations for

calculating the electronic structure within the Korringa-Kohn-

Rostoker (KKR) Green function method. The KKR secular

equation reads as

M(k,E)c(k,E) = 0 , (10)

where the KKR matrix M(k,E) = 1 − g(k,E) t(E) contains

the Fourier-transformed structure constants of free space

g
µµ′

��′(k,E) =
∑

n,n′

eik·(Rn−Rn′ ) g
µµ′

��′(Rn − Rn′ ,E) (11)

and atomic transition matrix t(E) = {δµµ′ t
µ

��′}. These matri-

ces and the vectors c(k,E) = {c
µ
�} depend on the combined

angular momentum and spin index � = (ℓ,m,σ ) and µ labels

the atoms in the unit cell, and Rn is a lattice vector. We use the

screened KKR formalism [39], where the structure constants

of free space are replaced by those of a reference system of

repulsive muffin-tin potentials with transition matrices t ref .

The resulting structural Green function g
ref,µµ′

��′ (Rn − Rn′ ,E)

decays rapidly with distance. Then, the secular equation takes

the form

M̃(k,E)c(k,E) = 0, (12)

where M̃(k,E) = 1 − gref(k,E) �t(E), and �t(E) = t(E) −

t ref(E). The two KKR matrices in Eqs. (10) and (12) are

connected to each other via

M̃ = (1 − g t ref)−1M. (13)

Hence, as long as the first term on the right-hand side does

not become singular for the energy range of interest (which is

typically true for energies as large as 30 eV above the Fermi

level [39]), the roots of the two secular equations and the

coefficient vectors are identical.

The vector c contains the expansion coefficients of the wave

function in terms of the regular scattering solutions R
µ

�′�(r,E)

of the radial Schrödinger equation off the potentials at sites τµ:

�kj (r + τµ) =
∑

�′

YL′(r̂) χσ ′
∑

�

R
µ

�′�(r,E) c
µ

�,j (k,E).

(14)
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Here, the real-space vector r is restricted to the atomic

cell around the atom position τµ, the spinors χ↑ =
(1

0

)

and

χ↓ =
(0

1

)

define a basis in spin space, and r and r̂ denote the

modulus and direction, respectively, of r . YL denotes spherical

harmonics of angular momentum L = (ℓ,m). The index j

labels possible degeneracies, for example, as it is the case for

nonmagnetic hosts with space-inversion symmetry (see Sec. II

and the Appendix). In case of a degeneracy, the eigenvectors cj

corresponding to different orthonormal eigenfunctions �kj are

not themselves orthonormal; an orthogonalization of the wave

functions is then needed, taking into account the full form (14).

If one considers instead of the Schrödinger equation the

scalar-relativistic equation or Dirac equation, then the regular

solutions R(r,E) in Eq. (14) have a large and small component

and the wave function turns into a four-component spinor. The

regular solutions obey a Lippmann-Schwinger equation that

are solved noniteratively as described in Ref. [40].

For a given pair (k,E), Eq. (12) only yields a nonzero

coefficient vector c [and thus a nonvanishing wave function via

Eq. (14)], if the corresponding KKR matrix is singular. These

pairs define the band structure E(k) of the crystal. We stress

that the band structure is defined implicitly via the KKR secular

equation (10), in contrast to the explicit calculation of E(k)

via a diagonalization of the Hamiltonian in basis-set-based

methods.

2. Spin-expectation value

Knowing the wave function �kj (r + τµ), the spin-

expectation value Skj of a state is given by

Skj =
�

2

∑

µ

∫

V µ

d3r �
†
kj (r + τµ)(σ P · ŝ)�kj (r + τµ).

(15)

In a ferromagnet, the SQA is given by the direction of the

magnetization. The case of a nonmagnetic and space-inversion

symmetric host is described in Sec. II and in the Appendix. By

inserting the expansion (14), Eq. (15) can be rewritten as

Skj =
�

2
c
†
j (k)(� · ŝ)cj (k), (16)

where each component of � = (�
x
,�

y
,�

z
)T contains the

corresponding (2 × 2) Pauli matrix σ P
i (i = x,y,z) and the

regular solutions R
µ

�′�:

�
µ,i

��′(E) =
∑

L1,�2,�3

CL1,L2,L3

∫

dr 

µ

L1
(r)

×
[

R
µ
�2�

(r; E)
]∗(

σ P
i

)σ2σ3
R

µ

�3�′(r; E). (17)

Here, CL1,L2,L3
are the Gaunt coefficients (integrated products

of three spherical harmonics) and 

µ

L1
(r) are the shape

functions [41,42] confining the integration to the volume

of the atomic cell µ. In this way, the spin-matrix elements

between Bloch states are expressed by a k-independent (but

energy-dependent) matrix � and k-dependent eigenvectors

cj . Algebraic manipulations involving linear combinations of

�j (see, e.g., the Appendix) are thus merely transformed to

manipulations containing the eigenvectors cj .

B. Fermi-surface calculation

In this section, we present details of our implementation

of solving the KKR secular equation (12) to find the Fermi

surface of a metal.

1. Tetrahedron method

To calculate the Fermi surface in practice, we fix the energy

E = EF in the secular equation (12) and drop it in our notation

for simplicity. We scan the reciprocal space for a singular KKR

matrix by reformulating the secular equation as an eigenvalue

problem

M(k)cj (k) = λj (k)cj (k). (18)

The size N = 2 Nat (ℓmax + 1)2 of the matrix M is determined

by the angular momentum cutoff ℓmax, the number of atoms

in the unit cell Nat, and a factor 2 for spin. Evidently, for each

matrix M , also N eigenvalues and eigenvectors exist, which are

labeled by j . A Fermi-surface point kF is found if at least one of

these eigenvalues vanishes, λo(kF) = 0, and the corresponding

eigenvector co(kF) is proportional to the coefficient vector

from Eq. (12) [a correct normalization of the wave function

in Eq. (14) has to be ensured]. If the corresponding state is

n-fold degenerate, also n eigenvalues vanish at the same band

structure point (kF,EF).

To find the points with λ(k) = 0, we divide the reciprocal

space into a set of space-filling tetrahedra. First, a regular

rectangular grid is created with eight neighboring grid points

forming a cuboid. Then, each cuboid is further divided

into six tetrahedra [cf. Fig. 1(a)]. As a next step, the roots

of the eigenvalues λi are searched for along the edges of

a tetrahedron. Finally, the intersection area of the Fermi

surface with the tetrahedron is determined. Three cases can

be distinguished [23]: a triangle (case I) or a quadrangle

[case II, cf. Fig. 1(b)] or no intersection area (case III). For

sake of simplicity in a computer code, a quadrangle can be

decomposed into two triangles and no distinction between the

cases I and II has to be made in subsequent parts of the code.

FIG. 1. Left: cuboid in k space for the special case of a cubic

unit cell and division into six tetrahedra, each one defined by four

vertices: (1236), (1356), (1576), (1246), (1486), and (1876). All six

tetrahedra have a common edge, which is a space diagonal (from k1 to

k6). Right: intersection area of a tetrahedron with the Fermi surface.

Within linear interpolation, only plane objects (triangles in case I or

quadrangles in case II) can occur.

144403-4



FERMI SURFACES, SPIN-MIXING PARAMETER, AND . . . PHYSICAL REVIEW B 93, 144403 (2016)

We want to stress some computational aspects:

(1) The KKR matrix is in general non-Hermitian and as

a result the eigenvalues are complex numbers. The real and

imaginary parts of λo do not necessarily vanish at the exact

same k point due to finite numerical cutoff parameters. We

determine the root such that the imaginary part vanishes and

check whether also the real part is reasonably small. We usually

achieve Imλo ∼ 10−12 and Reλo ∼ 10−5.

(2) To find a root along an edge, we compute the eigenval-

ues at the start and end points of the edge and interpolate

linearly in-between. By doing so, we find an approximate

Fermi-surface point where the linearly interpolated eigenvalue

vanishes. However, the true intersection point of the Fermi

surface with the edge will be somewhat different, and we

refine the approximate k point by applying a nested intervals

method (false position method, cf. Ref. [43]). Usually, only

three to five iterations are needed to ensure Imλo = 0 up to the

precision stated above.

(3) The order of the (complex-valued) eigenvalues depends

on the computer routine which is used to diagonalize the

KKR matrix. Thus, when comparing the eigenvalues at two

different k points, λi(k1) and λj (k2), the connectivity (i ↔ j )

that should correspond to the continuity of λi(k) is not

known a priori. As a result, it is not possible to interpolate

the eigenvalues between discrete k points. To resolve this

issue, we use the fact that the coefficient vectors are (nearly)

orthogonal to each other if they belong to different bands and

the two k points are not too far away from each other. We

calculate the pairwise projections of these coefficient vectors

pij = c̄i(k1) · cj (k2). Here, c̄i(k1) denotes a left eigenvector

of M(k1), i.e.,

c̄i(k1)M(k1) = λi(k1)c̄i(k1). (19)

For a selected i, we find pij ≈ 1 only for one j ∈ {1, . . . ,N},

which determines the connection between the eigenvalues

at k1 and k2. If the system exhibits the aforementioned

conjugation degeneracy, each state is twofold degenerate and,

as a consequence, always two eigenvalues (say λi and λi+1)

are the same. Then, we only treat one of the two degenerate

eigenvalues at k1 (i.e., all λ2i for i ∈ {1, . . . ,N/2}), but still

calculate the projections pij for all j ∈ {1, . . . ,N} at k2. In

the worst case, maxj pij ≈ 0.5 for the two j ’s that belong to

the conjugation-degenerate pair and very small for the other

j ’s. We highlight that due to the correct connectivity of the

eigenvalues, the method is capable of calculating crossings of

Fermi-surface sheets correctly.

2. Visualization set

At the end, the whole Fermi surface is represented as a col-

lection of triangles from all tetrahedra. Evidently, neighboring

tetrahedra share intersection points, and thus the number of

distinct k points is much smaller than three times the number

of triangles (typically by a factor of 5 to 6 for bulk crystals).

This set can still be utilized to visualize the Fermi surface and

calculated properties on it, hence, we call it visualization set.

3. Integration set

It may be required to further reduce the number of k points

on the Fermi surface. This is especially the case when the

quantity to be calculated is a function of two or more k points.

A prominent example is the scattering rate Pkk′ needed in

the calculation of electron transport properties or spin and

momentum relaxation times. We achieve a further reduction

of the number of k points by first merging all triangles that

originate from a cuboid (remember that a regular rectangular

mesh underlies the tetrahedra) into a set of triangles. Then,

this whole set is represented by a single k point, which is

chosen to be the closest one to the center of the cuboid. A

weight Sk of this representative k point is given by the total

area of the triangles in this set. If more than one Fermi-surface

sheet intersects the cuboid, each sheet is represented by its

own k point and weight. All representative k points form the

so-called integration set. It is not possible anymore to visualize

this set because the information about the explicit form of the

Fermi surface is lost by concatenating it into the weights Sk.

However, the integration set is well suited to perform accurate

Fermi-surface integrals.

C. Fermi velocity

The Fermi velocity vF(k) = (∂E/∂k)|E=EF
, where E is the

band energy under consideration, is often required for the eva-

luation of Fermi-surface integrals since it appears in the

integration weight dS/|vF(k)|.

In analogy to Gradhand et al. [44], the Fermi velocity is

calculated via the derivative of the KKR-matrix eigenvalues

λo with respect to k and E:

vi
F(k) = −

∂λo/∂ki

∂λo/∂E

∣

∣

∣

∣

k=kF,E=EF

, (20)

where the superscript i ∈ {x,y,z} denotes the Cartesian com-

ponent of a vector. The derivatives are calculated from finite

differences through a two-point rule. For the energy derivative,

we diagonalize M(kF,EF) and M(kF,EF ± δE). A proper

connection between the vanishing eigenvalue λo at EF and

the corresponding eigenvalues at EF ± δE has to be ensured as

explained in the previous Sec. III B. The derivative with respect

to k is done analogously between the points k and k ± δk · êi ,

where êi ∈ {êx,êy,êz} is a unit vector. The full Fermi-velocity

vector thus can be obtained. We usually choose δk ≈ 10−5 2π
a

and δE ≈ 10−5 Ry.

D. Fermi-surface integrals

Next, we want to consider integrals of the form

A =

∫

FS

dS

|vF(k)|
f (k). (21)

The division by the Fermi velocity renormalizes the infinitesi-

mal area dS according to the density of states of this particular

band structure point.

For the visualization set, the Fermi surface is represented

in terms of a finite number of triangles, and the Fermi-surface

integral turns into a finite sum over all these triangles, i.e.,

A =
∑

t At . We approximate the contribution of a triangle At

by taking the values of the function of interest on the three

corner points of the triangle [i.e., f (ki) with i = 1,2,3] and

interpolate linearly between them. The result takes the simple
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TABLE I. Fermi-surface-averaged spin-mixing parameter b2
ŝ . For hcp and cubic crystals, two and three, respectively, high-symmetry

directions of the SQA are considered, as well as the value for polycrystalline samples and the anisotropy A as defined in the text. The lattice

parameter a is given in units of Bohr radii.

hcp crystals

Lattice parameter Spin-mixing parameter

a c/a A c axis ab plane Polycrystal

3sp Mg 6.06 1.624 2200% 2.0 × 10−5 4.63 × 10−4 3.15 × 10−4 b

3d Sc 6.25 1.594 1250% 8.5 × 10−5 1.16 × 10−3 8.02 × 10−4 b

Ti 5.58 1.588 6000% 1.77 × 10−4 1.09 × 10−2 7.33 × 10−3 b

Zn 5.03 1.856 435% 2.59 × 10−4 1.39 × 10−3 1.01 × 10−3 b

4d Y 6.89 1.571 450% 1.31 × 10−3 7.20 × 10−3 5.24 × 10−3 b

Zr 6.11 1.593 705% 4.51 × 10−3 3.63 × 10−2 2.57 × 10−2 b

Tc 5.17 1.604 137% 2.32 × 10−2 5.51 × 10−2 4.45 × 10−2 b

Ru 5.11 1.584 86% 1.24 × 10−2 2.31 × 10−2 1.95 × 10−2 b

Cd 5.63 1.886 202% 1.69 × 10−3 5.11 × 10−3 3.97 × 10−3 b

5d La 7.124 1.611 150% 1.40 × 10−2 3.46 × 10−2 2.62 × 10−2

Lu 6.620 1.585 200% 1.10 × 10−2 3.33 × 10−2 2.53 × 10−2

Hf 6.040 1.580 830% 1.62 × 10−2 1.51 × 10−1 9.55 × 10−2

Re 5.218 1.615 88% 6.42 × 10−2 1.21 × 10−1 9.98 × 10−2

Rea 5.218 1.615 69% 8.38 × 10−2 1.41 × 10−1 1.22 × 10−1 b

Os 5.167 1.579 59% 4.85 × 10−2 7.69 × 10−2 6.66 × 10−2

6sp Tl 6.520 1.598 19% 5.04 × 10−2 6.00 × 10−2 5.61 × 10−2

Cubic crystals

Lattice Spin-mixing parameter

a A [001] [110] [111] Polycrystal

5d Ta bcc 6.247 0.2% 1.746 × 10−2 1.750 × 10−2 1.748 × 10−2 1.748 × 10−2

W bcc 5.981 5.7% 6.49 × 10−2 6.26 × 10−2 6.14 × 10−2 6.27 × 10−2

Wa bcc 5.98 6.0% 5.73 × 10−2 5.52 × 10−2 5.41 × 10−2

Ir fcc 7.255 0.9% 5.50 × 10−2 5.54 × 10−2 5.55 × 10−2 5.53 × 10−2

Pt fcc 7.414 0.4% 5.27 × 10−2 5.26 × 10−2 5.25 × 10−2 5.25 × 10−2

6sp Au fcc 7.71 0.1% 3.248 × 10−2 3.252 × 10−2 3.252 × 10−2 3.251 × 10−2

Pb fcc 9.36 0.1% 6.616 × 10−2 6.609 × 10−2 6.608 × 10−2 6.611 × 10−2

aCalculated with full potential.
bApproximated by b2

poly ≈ 1

3
b2

ŝ‖c + 2

3
b2

ŝ‖ab.

form

At =
St

3

3
∑

i=1

f (ki)

|vF(ki)|
, (22)

where just the mean average of the integrand at the three corner

points enters and St is the area of the triangle.

For the integration set, the integral just turns into

A =
∑

k

Sk

f (k)

|vF(k)|
, (23)

where the sum is over all representative k points in the

integration set and Sk are their weights (see Sec. III B 3).

IV. APPLICATION

We apply our method to the calculation of the Fermi

surfaces and the Elliott-Yafet parameter (EYP) for various

metals from density functional theory (DFT) in the local

spin-density approximation (LSDA) using the parametrization

of Vosko, Wilk, and Nusair [45], employing the Korringa–

Kohn–Rostoker method as explained in the previous sections.

We choose the experimental crystal structures with lattice

constants as given in Table I.

The computational scheme which was used can be divided

into two sets: (i) for 5d and 6sp elements, a self-consistent

potential was obtained solving the fully relativistic Dirac

equation. In the final step for the determination of the Fermi

surface, vF and b2
kŝ , this potential was used to construct the

scalar-relativistic equation plus the spin-orbit coupling term

added in its Pauli form (SRA+SOC).1 The atomic sphere

approximation (i.e., neglecting nonspherical terms in the

potential) was used. For the expansion of wave functions,

an angular-momentum cutoff of ℓmax = 4 was used. (ii) In

1At the time when calculations for 5d and 6sp metals were

performed, the inclusion of the full potential and SOC in the

self-consistency cycle in our code was not yet possible. Since for

bulk metals the atomic sphere approximation (ASA) of spherically

symmetric potentials is a good approximation for the band structure,

we performed the calculation of 5d and 6sp metals in ASA where the

Dirac equation was implemented [53].
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contrast, for the lighter hcp elements (3sp, 3d, and 4d),

within all steps the SRA+SOC equation was used and the

full potential was taken into account as it became available by

the development of a new solver [40]. An angular momentum

cutoff ℓmax = 3 was found to be sufficient. Tests for W and

Re have shown that procedures (i) and (ii) lead to the same

results.2 We emphasize that no external fields are used in our

first-principles calculations unless explicitly stated.

As analyzed recently by us [21,35], the EYP can exhibit

a strong anisotropy when the direction of the SQA is varied

with respect to the lattice of the crystal [see Eq. (6)]. The

anisotropy can reach gigantic values in systems with lowered

symmetry, such as uniaxial bulk crystals [21] or thin films

[36–38]. To a large extent, the anisotropy stems from points

on the Fermi surface, where spin-flip hot spots exist for one

direction of ŝ, but are absent for another direction. If such a

region on the Fermi surface is rather large or forms a whole line

in contrast to a singular point, we talk about a spin-flip hot area

or loop instead of a spot. To obtain these anisotropic regions,

the general rules to obtain spin-flip hot spots as formulated

by Fabian et al. [34] must be met: apart from conjugation

degeneracy, an additional degeneracy must be present in the

scalar-relativistic (i.e., without SOC) band structure. These

frequently occur at Brillouin zone boundaries and along high-

symmetry lines, or accidentally at an arbitrary point in the BZ.

Upon inclusion of SOC, a splitting occurs that, if caused by

the spin-flip part of SOC, leads to a spin-flip hot spot. Such

a spot becomes in addition very anisotropic if the electronic

wave function exhibits a particular orbital character [21,35].

We first discuss the EYP and its anisotropy in the 6sp metals

fcc-Au, hcp-Tl, and fcc-Pb and all 5d metals. We distinguish

different directions of the SQA and exemplify the conclusions

made in Ref. [21]. We then investigate the influence of an

external B field on the spin-mixing parameter in these metals.

Last, we present the EYP in other elemental metals with hcp

crystal structure (Mg, Sc, Ti, Zn, Y, Zr, Tc, Ru, and Cd).

A. 5d and 6sp metals

The EYP of all 5d and some 6sp metals is presented in

Table I. Let us first comment on the magnitude of the EYP

in those crystals: For a given SQA along the c axis and the

[001] direction for hcp and cubic crystals, respectively, the

values range between 1.10 × 10−2 for Lu and 6.6 × 10−2 for

Pb. In this case, the large magnitude of b2
ŝ ≈ 10−2 is mainly

determined by the strong spin-orbit coupling strength. For

comparison, the much lighter elements Cu and Al with weaker

spin-orbit coupling have an EYP of the order of 10−3 and 10−5,

respectively [34,46].

The variation of b2
ŝ within the series (for fixed SQA along

the c axis) is determined by the details of the electronic

structure. This can be seen best by comparing the distribution

of the spin-mixing parameter on the Fermi surfaces for the

hcp crystals (see middle row of Fig. 2). There, the k-resolved

spin-mixing parameter is shown in a color code on the Fermi

2The values for b2
ŝ might vary, but the order of magnitude and

qualitative behavior, especially for the anisotropy of b2
ŝ , remain the

same (see Table I for W and Re).

surface for all 5d metals with hcp crystal structure. The most

important qualitative difference is the presence of spin-flip hot

spots (green to red points on the Fermi surfaces of Re, Os, and

Tl), which leads to an increase of the Fermi surface averaged

b2
ŝ by approximately a factor of 5 as compared to La, Lu, and

Hf (see Table I). Hence, the spin-flip hot spots have not such

a dramatic impact on the averaged value as it is the case for

crystals with weaker spin-orbit coupling (an increase of b2
ŝ due

to spin-flip hot spots of a factor of 50 was reported for Al [34]).

Let us now turn the SQA away into a different direction

and investigate the anisotropy of the EYP. As already reported

in Ref. [21], a large anisotropy can be expected in uniaxial

crystals or systems with a preferential direction, such as hcp

crystals. The largest anisotropy among the 5d and 6sp elements

is obtained for Hf, where the EYP increases by one order of

magnitude from 1.6 × 10−2 to 15.1 × 10−2 when the SQA is

turned from the c axis to the ab plane (see Table I). This

corresponds to an anisotropy, defined by Eq. (6), as large

as 830%. But, also the other hcp crystals exhibit a large

anisotropy, where the smallest value A = 19% is obtained

for Tl. The EYP is largest for an SQA in the ab plane for all

hcp crystals (see Table I). An inspection of the Fermi-surface

resolved contributions (cf. Fig. 2) reveals the emergence of

large spin-flip hot areas and hot loops only for this direction

of ŝ. This is the main origin of the large effect.

We emphasize the last point by quantifying the hot-spot

contribution to the Fermi-surface averaged b2
ŝ . We constrain

the integral (5) to

b2
ŝ =

1

n(EF)

1

�

∫

Si

b2
kŝ

|vF(k)|
dS, (24)

where Si is the part of the Fermi surface where b2
kŝ lies within

the interval xi � b2
kŝ < xi+1 (with xi = 0,0.05,0.1, . . . 0.5).

These values form the histograms of Fig. 3, and in the end the
sum over all parts yields the total values b2

ŝ which are presented
in Table I. The giant anisotropy of Hf stems from a large
interval where 0.1 � b2

kŝ � 0.5 (compare the black striped and
red solid bars in Fig. 3). In contrast, the interval which is
relevant for the anisotropy is smaller for Os (0.15 � b2

kŝ � 0.5)

and Tl (0.1 � b2
kŝ � 0.2).

In Fig. 4, we present the Fermi surfaces of the body-
and face-centered-cubic crystals and display the spin-mixing
parameter on them for three high-symmetry directions of the
SQA. For nearly all elements and all directions of the SQA,
spin-flip hot spots, or at least regions of strongly enhanced
spin-mixing parameter, are present.

Taking Pt as an example, for ŝ ‖ [001] (which we denote as

z axis for simplicity), we find b2
kŝ ≈ 0.45 at the four pockets

in the xy plane (of which only two are visible in Fig. 4).

Due to the cubic symmetry of the crystal, pockets with the

same shape are also present along the z axis, but with a low

spin-mixing parameter of b2
kŝ ≈ 0.05. Thus, in this case the

spin-mixing parameter is high (low) if the pocket is placed

perpendicular (parallel) to the SQA. This dependence is similar

to the emerging spin-flip hot areas in hcp crystals, but here we

have high and low contributions for the same SQA. When we

now change the SQA from [001] to [111] in Pt, all six pockets

form an angle with the SQA. As a result, b2
kŝ at the pockets

in the xy plane is reduced from 0.45 to only approximately
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FIG. 2. Fermi surfaces for various 5d metals with hcp crystal structure. The first and second rows show b2
kŝ as color code for ŝ in the ab

plane and along the c axis, respectively. In the lower row, the absolute value of the Fermi velocity is shown. The same color legend is used as

for the spin-mixing parameter, but with the limits as indicated below the plots (in atomic Rydberg units, i.e., the speed of light takes the value

274.072).

0.25. Simultaneously, the spin-mixing parameter at the two

pockets along the z axis increases from 0.05 to 0.25. The net

change in the total b2
ŝ is thus strongly suppressed due to the

high symmetry of the crystal, changing by merely 0.4% (cf.

Table I).

The situation is similar for the other cubic elements,

e.g., at the handles in tungsten (see also Ref. [21]) or at

the “hot loops” in Ir (cf. Fig. 4), and anisotropy effects at

symmetry-related points mainly cancel each other. As a result,

the anisotropy in cubic elemental crystals is generally smaller
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FIG. 3. Contribution to b2
ŝ according to Eq. (24), where the

integral is restricted to regions where b2
kŝ lies in an interval as indicated

on the abscissa, for selected hcp crystals and two directions of the

SQA, namely, parallel to the ab plane (black striped bars) and along

the c axis (red solid bars).

than 1% (see Table I), with the exception of W which exhibits

a relatively strong anisotropy of about 6% (cf. Table I and

Ref. [21]).

We point out that the anisotropy is maximal for single

crystals (as calculated here). In the case of polycrystals

with some preferential axis orientation, the anisotropy will

appear reduced, and in the case of no preferential axis it will

vanish. For the latter case, the Elliott-Yafet parameter needs

to be determined by averaging over all possible directions

of ŝ:

b2
poly =

1

4π

∫

d�b2
ŝ , with ŝ = ŝ(ϑ,ϕ). (25)

We determined the values for 5d and 6sp polycrystals by

numerical integration over the solid angle and present them in

Table I. We remark that, for hcp elements, the integrand can be

well approximated by a sin2 ϑ behavior, and the integral can

be evaluated to be b2
poly ≈ 1

3
b2

ŝ‖c + 2
3
b2

ŝ‖ab.

B. Band structure analysis

In Ref. [35], some general conditions that must be met

to obtain an emerging spin-flip hot spot were deduced from

a simple model, in which only six p states (pσ
i , with i =

x,y,z and σ = ↑,↓) were considered. Without SOC, the pσ
x ,

pσ
y , and pσ

z states were placed at energies δ/2, −δ/2, and

�, respectively, and the effect of the inclusion of SOC with

strength ξ was investigated. We briefly summarize the results:

the largest anisotropy was obtained, if the pσ
x and pσ

y states

are close in energy (δ ≪ ξ ), and the system is highly uniaxial

� ≫ ξ .

For hcp crystals, the uniaxiality is evident. Now, we

exemplify the importance of a fourfold quasidegeneracy with
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FIG. 4. Fermi surfaces for various 5d elements with cubic crystal structure. The first, second, and third rows show b2
kŝ as color code for ŝ

along [001], [110], and [111], respectively. In the lower row, the absolute value of the Fermi velocity is shown. The same color legend is used

as for the spin-mixing parameter, but with the limits as indicated below the plots (in atomic Rydberg units, i.e., the speed of light takes the

value 274.072).

a detailed study of the selected hcp crystals Hf, Re, and

Tl by band-structure calculations. Without SOC, the spin

degeneracy in a nonmagnetic crystal for every state is obvious.

Additionally, an orbital degeneracy is always present for states

where k is on the hexagonal face of the Brillouin zone

boundary (cf. black solid lines in Fig. 5). This special feature

of the hcp crystal structure is enforced by symmetry of their

nonsymmorphic space group [47]. Similarly, the states on the

high-symmetry line H -K in Tl and Hf are fourfold degenerate

[as we see in Figs. 5(c) and 6(a)]. These degeneracies are lifted

due to SOC into two pairs (red dashed lines in Fig. 5), and

hence the necessary conditions to form a spin-flip hot loop

at the hexagonal face of the BZ are always fulfilled. Since

the bands extend above and below the Fermi level on a large

energy scale of 1 eV or more, the effect that we describe will

be stable with respect to pressure, doping, or temperature. The

SOC splitting depends on the band index and k point in the BZ,

and can be as large as 0.5 eV [e.g., Re or Tl, see blue double

arrows in Figs. 5(b) and 5(c)]. For these bands, the condition

δ � ξ is not only fulfilled if the states are degenerate, but also

if they are split up to some δ � 0.5 eV in the absence of SOC.

Such a splitting δ occurs if k departs from the hexagonal

face towards the interior of the BZ and will grow with distance.

Eventually, it will exceed the value ξ , and at this point

b2
kŝ decays and the the spin-flip hot loop ends. With these

arguments, we can explain the different thickness of spin-flip

hot loops near the hexagonal face of the BZ, best seen in Hf:

A H
-1

-0.5

0

0.5

1

E
-E

F
(e

V
)

Hf

A L H A
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H Kk
-1
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0

0.5

E
-E

F
(e

V
)

Tl A

H

K M

L

(a) (b)

(c) (d)

FIG. 5. (a)–(c) Band structures without (black solid lines) and

with (red dashed lines) SOC along high-symmetry lines in the

Brillouin zone. Blue double arrows denote a large SOC splitting

of bands. A black arrow indicates a band in Hf which exhibits only

a small SOC splitting. In panel (d), the hcp Brillouin zone with

high-symmetry points is shown.

144403-9



BERND ZIMMERMANN et al. PHYSICAL REVIEW B 93, 144403 (2016)

-1

-0.5

0.0

0.5

E
 -

 E
F
 (

eV
)

B=0

2-fold

4-fold
∆

SOC

(a)

H Kk point

B=0.1 eV

(b)
∆E

no SOC
SOC, B || z

SOC, B || x

H Kk point

-0.5

0.0

0.5

E
 -

 E
F
 (

eV
)

B=0.5 eV

∆

B

(c)

∆

SOC

0 0.5B (eV)
0

0.5

b
2

0

1

∆
E

 (
eV

)

(d) B || x

FIG. 6. (a)–(c) The splitting of the fourfold degeneracy in

presence of SOC and an exchange B field is shown for Hf along the

path H -K for B = 0, 0.1, and 0.5 eV. Dashed-dotted lines represent

bands without SOC, full and dashed lines with SOC, and ŝ along the z

and x axes, respectively. In (d), the spin-mixing parameter b2 (circles)

and splitting of energy bands (diamonds) for a selected k point on

the path H -K and B ‖ ŝ = x as a function of the field strength B is

shown. A strong decrease of b2 with increasing B is observed. The

black solid line is an exponential fit (see text for details). The type

of energy splitting is changed from SOC dominated (denoted by the

horizontal blue dashed line at �SOC = 170 meV) to B dominated

(denoted by the diagonal blue dashed line �E = 2B). The crossover

is defined as the point where 2B = �SOC, and is indicated by the

vertical black dashed line.

the band with the large SOC splitting near the H point [see

blue double arrow in Fig. 5(a)] forms the outer Fermi-surface

sheet, which develops thick spin-flip hot loops for an SQA

in the ab plane (cf. Fig. 2). On the other hand, the band that

crosses the Fermi level closer to the A point [see black single

arrow in Fig. 5(a)] is much weaker SOC split and develops

only a 100 times thinner loop on the inner FS sheet (hardly

visible in Fig. 2).

C. Influence of an external B field

An additional orbital degeneracy to the conjugation degen-

eracy in absence of SOC is a prerequisite for the occurrence of

spin-flip hot spots. In the previous paragraph we analyzed how

quickly b2
kŝ decays when the initial fourfold degeneracy on a

high-symmetry line is broken by moving to k points away from

this line. Another way to lift the initial fourfold degeneracy is

through breaking of conjugation symmetry by an external B

field of the form B · σ P.3

The spin-quantization axis (SQA) is necessarily aligned

parallel to the B field. By rotating the SQA, we change the spin-

conserving part ξ (LS‖) and spin-flip parts of SOC ξ (LS↑↓)

[35]. As an example, for ŝ ‖ z the spin-conserving part reads as

3We remind that conjugation symmetry is the combined action of

space-inversion and time-reversal symmetries. The latter is broken

by the external B field.

ξLz Sz, whereas for ŝ ‖ x it changes to ξLx Sx . Evidently, the

spin-conserving part of SOC couples bands of the same spin

character, whereas the spin-flip part couples those of opposite

spin character.

As we explain in the following, through the increase of the

strength of B we are able to reduce the effect of the spin-flip

part when SOC is added to the nonrelativistic band structure,

whereas the spin-conserving part remains at its full strength.

We analyze for various B the change of the band structure

upon the inclusion of SOC in the high-symmetry path H -K

for hcp Hf (cf. Fig. 6).

Let us first consider a vanishing B field [cf. Fig. 6(a)]:

the nonrelativistic bands are fourfold degenerate due to the

conjugation and the orbital symmetry. Then, the nonsymmor-

phic degeneracy is lifted by SOC into two twofold-degenerate

pairs. On the one hand, the splitting �SOC is caused by the

spin-conserving part if the SQA is along the z axis, and on the

other hand the same splitting is caused by the spin-flip part for a

SQA along x. This fact was checked by separately acting with

the spin-conserving and spin-flip parts of L · S, respectively,

when calculating the band structure of Fig. 6(a) (not shown).
We now apply a strong B field of 0.5 eV [cf. Fig. 6(c)],

first without SOC: the bands are split into a pair of spin-
up and a pair of spin-down states, with an energy difference
between the pairs of �B = 2B. It is important to note that
the states with the same spin character remain degenerate, and
the situation is independent on the direction of B as SOC
was neglected. We now include SOC, first for a B field (and
thus the SQA) along z: we observe that each degenerate pair
acquires a full SOC splitting �SOC, of same size as for the case
B = 0 [compare splittings of solid lines in Figs. 6(a) and 6(c)].
The conclusion is that this splitting must be fully governed by
the spin-conserving part of SOC [the same conclusions can be
drawn for a smaller B field of 0.1 eV, see Fig. 6(b)]. Next,
we analyze the response of the nonrelativistic degenerate pairs
upon inclusion of SOC for B (and SQA) along x. Nearly no
response of the bands is observed [see yellow dashed lines in
Fig. 6(c)].

Clearly, now the spin-conserving part of SOC is “deacti-

vated” for these particular bands, in strong contrast to the case

that B ‖ z. The question is as follows: Was the spin-flip part

at the same time activated? At this large-B field, we are not

able to judge it, as it couples states of different spin character,

which are separated by a rather large energy of 2B = 1 eV,

and thus the effect of spin-flip SOC is strongly suppressed.

For intermediate B fields [cf. dashed line in Fig. 6(b)], the

degeneracy is still present because both states in the up band

couple to the states in the down band the same way due to their

special symmetry. In the limit B = 0, the full SOC splitting is

restored, but now caused by the spin-flip part (see above).

A detailed analysis of the band splitting as a function of B

(for B ‖ x) is shown in Fig. 6(d) for a selected k point in H -K .

With decreasing B, a crossover between B-field-dominated

and SOC-dominated regimes can be seen, which is well char-

acterized by the condition 2B = �SOC [indicated by a vertical

line in Fig. 6(d)]. Simultaneously, the spin-mixing parameter

of the states b2 decreases exponentially from its maximal

value of 0.5 at vanishing B towards a value b2
∞ for large

B, described by the function b2(B) = ( 1
2

− b2
∞) e−2B/� + b2

∞.

We fitted parameters b2
∞ = 1.95 × 10−2 and � = 145 meV
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FIG. 7. Spin-mixing parameter b2
kŝ for the isoelectronic elements Hf, Zr, and Ti (Z is the atomic number) for two directions of the SQA.

The weakening of the spin-orbit coupling strength when going from Hf via Zr to Ti results in a smaller b2
kŝ in most parts of the Fermi surface.

Also, the width of the spin-flip hot loops becomes smaller, but they remain finite even for Ti. The insets display the loop region with a linear

color scale.

[see black solid line in Fig. 6(d)], which is in good agreement

to the spin-orbit splitting �SOC = 170 meV.

This analysis allows us as well to estimate the stability of

the spin-flip hot loops against an external magnetic field: to

significantly decrease the intensity of the loop by a factor of
1
2
, a field about 50 meV is necessary (which corresponds to

about 1 kT). This is similar to findings in magnetic materials

[48], where the magnitude of the EYP is stable up to fields

of the order of a few kT. Such large fields could probably be

produced by a proximity effect to a ferromagnet, but only in

the first few interface layers, so it is unlikely that they occur in

bulk.

Similarly, we expect that the predicted anisotropy should

remain finite even at room temperature, where a broadening

of the bands on the order of 25 meV is smaller than the

spin-orbit splitting. The situation could be different for both

perturbations, external B field and temperature effects, if SOC

is much weaker.

D. 3d and 4d metals with hcp crystal structure

We turn our attention to hcp crystals with smaller SOC,

namely, the 4d elements Y, Zr, Tc, Ru, and Cd, and the 3d

(nonmagnetic) crystals of Sc, Ti, and Zn. Additionally, we

consider the very light (small SOC) element Mg.

Our results are collected in Table I. They show that the

anisotropy of b2 can reach colossal values of up to 6000% for

Ti compared to 830% for Hf, or 1250% for Sc compared to

200% for Lu, which are isoelectronic to each other. Generally

speaking, we observe the trend that the anisotropy increases

from 5d/6sp elements to 4d elements to 3sp/3d elements.

This comes as a surprise since from a decrease in SOC strength

also a decrease of the anisotropy could have been expected.

However, as our calculations show and we analyze further

in the rest of this section, the anisotropy increases for light

elements due to the presence of spin-flip hot loops. In the

following, we discuss some of these metals in more detail.

We investigate this trend in detail by examining the

elements Hf, Zr, and Ti. This trio of elements is well suited

for a study of the influence of the spin-orbit coupling strength

because (i) they all crystallize in the hcp crystal structure, (ii)

their isoelectronic valence band configuration results in very

similar Fermi surfaces, and (iii) the SOC strength ξ varies

by about one order of magnitude (ξHf/ξTi ≈ Z2
Hf/Z

2
Ti ≈ 10,

where Z is the atomic number of the respective element; see

detailed analysis following).

Let us compare the spin-mixing parameter on the Fermi

surfaces of these three elements (see Fig. 7) with special

attention to its scaling as a function of the atomic number

Z. It is insightful to divide the Fermi surface into two parts:

(i) “ordinary” regions, that do not exhibit a spin-flip hot spot

and (ii) regions with spin-flip hot spots.

(i) At an ordinary point on the Fermi surface, e.g., the

central Fermi surface sheet in Fig. 7, b2
k decreases from Hf via

Zr to Ti as inferred from the color on the logarithmic scale. A

detailed analysis for a selected, ordinary k point reveals that

the spin-mixing parameter scales as b2
k ∼ Z3.3 (see Fig. 8).4

Hence, the contribution of these ordinary regions to the Fermi-

surface average in Ti is smaller by two orders of magnitude

compared to Hf.

(ii) In contrast, the spin-flip hot loop at the hexagonal face

of the BZ in Hf for ŝ ‖ ab plane remains present also for

Zr and Ti (see upper part of Fig. 7). The thickness of the

hot loop decreases from Hf via Zr to Ti because of the smaller

SOC strength, but importantly b2
k = 0.5 remains at its maximal

value directly on the hexagonal face. As a result, the Fermi-

surface average is dominated by this contribution and scales

very different with Z (roughly as Z2). Hence, it is only one

order of magnitude smaller in Ti compared to Hf.

4This allows us to approximate for the scaling of the spin-orbit

coupling strength ξ ∼ Z1.65 (since b2 ∼ ξ 2 according to Elliott [32]).
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FIG. 8. Scaling of b2
kŝ at a selected k point on the inner sheet

of the Fermi surfaces of Ti, Zr, and Hf as a function of the atomic

number. The least-squares fit yields b2
kŝ ∼ Z3.3, independent on the

direction of the SQA.

To summarize, the fact that the spin-flip hot loops remain

at their maximal value directly on the hexagonal face of the

BZ, that they disappear for one direction of ŝ, and that the re-

mainder of the FS gives almost no contribution causes the

colossal anisotropy of b2 in Ti. This trend is also well observed

for the three isoelectronic elements Sc, Y, and Lu (see Figs. 4

and 9), and a steady increase of A with decreasing atomic

number Z is obtained (see Table I).
The drastic increase of the averaged EYP due to the

presence of very thin spin-flip hot loops is qualitatively similar
to the increase of the EYP in fcc-Al due to the presence of very
small spin-flip hot spots, as found by Fabian and Das Sarma
[34]. In their study, the realistic calculation was compared
to a fictitious one, where Al was modeled as a monovalent

metal leading to a disappearance of spin hot spots. In contrast,
in our study of Ti (and many other hcp crystals) we can
make the spin-flip hot loops disappear by merely changing
the SQA due to the particular conditions met in these hcp
crystals.

The trend of increasing A with decreasing Z is violated

between Hf and Zr. This peculiarity can be attributed to two

anomalies in the band structure: First, the anisotropy in Hf is

enhanced due to the fact that in Hf a Fermi-surface sheet occurs

to be close to the corner H point of the BZ, which causes

the Fermi velocity of this band to vanish and enhances the

weight of this particular band in the integral in Eq. (5). Since

this precise band incorporates a broad spin-flip hot loop, the

anisotropy is also enhanced from about 500% to the reported

value of 830% [21]. Second, the anisotropy in Zr is reduced

due to the presence of a spin-flip hot loop on the central sheet

of the Fermi surface due to an accidental degeneracy of bands.

This inner loop appears irrespective of the direction of the SQA

and enhances the value of b2
ŝ‖z by a factor of 3–4 compared

to the ordinary scaling (according to Fig. 8), which leads to a

reduction of A in Zr.

V. CONCLUSIONS

We have developed a tetrahedron-based algorithm within

the relativistic Korringa-Kohn-Rostoker Green function

method for the accurate calculation of Fermi surfaces of very

complicated shape, as frequently found for transition-metal

crystals. We applied it to all 5d metals (La, Lu, Hf, Ta, W,

Re, Os, Ir, and Pt), some 6sp metals (Au, Tl, and Pb), and

selected lighter elements with hcp crystal structure (Mg, Sc,

FIG. 9. Spin-mixing parameter b2
kŝ as color code on the Fermi surface for various hcp elements. The top and bottom pictures of each

element correspond to two different directions of ŝ. For all the plots (except Mg), the same color legend is used.

144403-12



FERMI SURFACES, SPIN-MIXING PARAMETER, AND . . . PHYSICAL REVIEW B 93, 144403 (2016)

Ti, Zn, Y, Zr, Tc, Ru, and Cd). Even fine features, such as

small splittings of Fermi-surface sheets, which are frequently

found in crystals of light elements due to their small spin-orbit

coupling, are properly described.

We investigated the spin-mixing parameter, which is related

to spin relaxation of conduction electrons via the Elliott-Yafet

mechanism, and in particular concentrated on its recently

discovered anisotropy with respect to the spin-polarization

direction of electrons [21]. Our scan through the 5d and

6sp metals shows that hcp crystals exhibit in general a giant

anisotropy of about 100%, as opposed to cubic crystals with

anisotropies of up to merely 1%. Exceptions with an above-

average anisotropy are hcp-Hf (830%) and bcc-W (6%). We

identified the emergence of spin-flip hot loops at the hexagonal

face of the hcp Brillouin zone as the main source for a giant

anisotropy. We found that these hot loops (and consequently

the anisotropy) should be stable under an external B field with

strength equivalent to the SOC splitting (which corresponds to

about 1–2 kT in these 5d metals), as well as under moderate

variations of the Fermi energy through pressure, temperature,

or doping. We showed that through a large variation of B,

the spin-mixing parameter b2 at a spin-flip hot spot can be

tuned.

For light elements with hcp crystal structure, we find

even higher anisotropies as compared to 5d hcp crystals,

reaching a colossal value for hcp-Ti of 6000%. Again, spin-flip

hot loops were identified as the main source. Due to the

smaller SOC, they are thin (but of finite width), which leads

in combination with a tiny spin-mixing parameter in the

other parts of the BZ (scaling as b2 ∝ Z3.3) to a colossal

anisotropy.

Our calculations identify the light hcp crystals of Mg,

Sc, Ti, and Zn as promising materials for new spintronics

applications because the low Elliott-Yafet parameter of the

order of 10−4 might enable long enough spin-diffusion lengths

for real devices, and at the same time exhibits the largest

anisotropies that can be exploited to tailor the spin-diffusion

length. As an outlook, the inclusion of the explicit scattering

mechanism via, e.g., impurities or phonons, is necessary to

make quantitative predictions of the spin-diffusion length and

stability against temperature effects.
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APPENDIX: LINEAR COMBINATION OF

CONJUGATION-DEGENERATE STATES: DISCUSSION

AND PHYSICAL INTERPRETATION

Assuming that the crystal Hamiltonian is invariant under the

action of the operators of space inversion (parity) P : �(r) →

�(−r) and time reversal K : �(r) → iσ P
y �∗(r), then for

every Bloch eigenstate �k there exists a conjugate partner

eigenstate PK�k that is degenerate at the same k, orthogonal

to �k, and has the opposite spin-expectation value [33].

This is the case for the pair of Eqs. (1) and (2). Practically,

time-reversal symmetry means absence of external or internal

magnetic fields in the crystal Hamiltonian.

In the case of conjugation degeneracy, and given a Bloch

eigenfunction �k of the crystal Hamiltonian, any linear

combination �k and PK�k is obviously again a Bloch

eigenfunction at the same k. For the particular problem of spin

relaxation, correspondence to experiment leads us to choose a

linear combination that maximizes the spin-expectation value

along ŝ. For this we use the unitary transformation

�+
kŝ = cos θk�k + sin θke

−iφkPK�k, (A1)

�−
kŝ = − sin θke

iφk�k + cos θkPK�k, (A2)

where two real parameters on the Bloch sphere, θk ∈ [0,π ]

and φk ∈ [0,2π ], suffice for the definition of the normalized

linear combinations up to an arbitrary global phase. It is easy

to see that �−
kŝ = PK�+

kŝ . Following Refs. [32,34] we then

define appropriate θk and φk such that S+
kŝ := 〈�+

kŝ |�

2
σ P ·

ŝ| �+
kŝ 〉 � 0 is maximal or, equivalently, S−

kŝ := 〈�−
kŝ |�

2
σ P ·

ŝ| �−
kŝ 〉 = −S+

kŝ � 0 is minimal (maximal in absolute value).

By demanding the derivatives with respect to θ and φ to vanish,

we obtain a maximal S+
kŝ under the condition

φk = arg
(

S ŝ
12

)

, θk =
1

2
atan

|S ŝ
12|

S ŝ
1

, (A3)

where S ŝ
1 = �

2
〈�k|σ

P · ŝ|�k〉 and S ŝ
12 = �

2
〈�k|σ

P ·

ŝ|PK�k〉. We should point out that this condition is

equivalent to imposing 〈�−
kŝ |σ

P · ŝ|�+
kŝ〉 = 0, as shown in

Ref. [14].

This particular selection of θk and φk, i.e., maximizing

the spin-expectation value along ŝ, is of course just one of

(infinitely) many possibilities, each of them corresponding,

in principle, to the idealization of a different experimental

setup. The particular one is motivated by the fact that in

conduction electron spin resonance experiments, an external

magnetic field Bext lifts the conjugation degeneracy, modeled

by the Hamiltonian Bext · σ P. Since the field is weak compared

to the interband separation, we may solve the eigenvalue

problem in the subspace spanned by �k and PK�k arriving

at the aforementioned condition. Our results in this paper are

calculated using this condition (A3).

A second condition that has been chosen in the past [46] is to

demand that 〈�+
kŝ |

�

2
σ P · ŝ ′|�+

kŝ〉 = 〈�+
kŝ |

�

2
σ P · ŝ ′′|�+

kŝ〉 = 0,

where ŝ ′ and ŝ ′′ form together with ŝ an orthonormal reference

system (e.g., the x,y,z axes). This choice implies that the states

�±
kŝ have a spin projection purely along the ŝ axis (which

was not the case for the first condition), and could plausibly

represent an experiment where electrons with selected spin

strictly along ŝ are injected into a material from the outside,

so that they have to be accommodated by Bloch states also

without perpendicular spin components. One then obtains

different equations for θk and φk [46,49].

The previous two conditions give very similar values for

S+
kŝ , except in the case that S+

kŝ becomes small, i.e., close to

spin-flip hot spots; for this reason, the anisotropy of the spin
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relaxation is also different, although it is of the same order of

magnitude.

Pientka et al. [14] call this a choice of gauge. Concerning

spin relaxation, they find that the two choices give similar but

slightly different results for the case of impurity scattering

in Cu, Ag, Pt. The same conclusion on spin relaxation was

reached by Heers [49].

A third condition has been introduced by Long et al.

[37] for the calculation of the surface Rashba states in

thin films. Here, the degeneracy to be lifted is related to

choosing between two degenerate surface states located at

two opposite film surfaces; the related experiment would be

an electron injection or a scanning tunneling measurement at

one surface. The choice of θ and φ is such that the charge or

the spin-expectation value is maximized on one surface and

in the vacuum region adjacent to it.

Generally speaking, any condition lifting the degeneracy in

the {�k,PK�k} subspace specifies a basis {�k = U�k,�̄k =

PK�k}, where U is a unitary transformation in the 2 × 2

subspace, and thereby represents a specific observable (defined

mathematically by its eigenvectors �k, �̄k) and corresponds

to a unique type of measurement. To this point, some insight

can be gained by the following observation. Considering the

spin polarization S�k
:= �

2
〈�k|σ

P|�k〉 and the corresponding

unit vector ŝ�k
:= S�k

/|S�k
|, it is obvious that the projection

S�k
· ŝ�k

is maximal with respect to all possible projections

of the type SU�k
· ŝ�k

since U will mix in terms containing

�̄k that is characterized by the opposite spin (see, e.g., Ref.

[14] for a proof). But, this means that the pair �k and �̄k is

just the pair �±
k that maximizes the spin in the direction ŝ�k

,

as defined by the first condition previously; i.e., the pair �k

and �̄k defines the eigenstates of a perturbation by a Zeeman

magnetic field along ŝ�k
. Therefore, any condition lifting the

degeneracy can be physically seen as imposing a k-dependent

magnetic field defined in this way. The first condition, used

throughout this paper, merely corresponds to the special case

of a k-independent field.

An application of the concept of a k-dependent Zeeman

field is the celebrated spin-orbit field observed in systems

with lifted space-inversion symmetry, e.g., in the conduction

band of zinc-blende or wurtzite structure semiconductors

[50] or in the band structure of noble-metal surface states

[51,52]. Here, the observable that breaks the symmetry is

the antisymmetric part VA of the crystal potential V that

can be written with the help of the parity operator as VA =
1
2
(V − PV P −1). Let �k and �̄k = PK�k be degenerate

conjugate Bloch eigenstates corresponding to the symmetric

part VS = V − VA, but otherwise arbitrarily chosen within

the 2 × 2 conjugate subspace. Then, VA causes a lifting of

degeneracy through the Hamiltonian

Hk =

(

〈�k|VA|�k〉 〈�k|VA|�̄k〉

〈�̄k|VA|�k〉 〈�̄k|VA|�̄k〉

)

. (A4)

Since the asymmetric potential satisfies VAP = −PVA, it is

straightforward to show that 〈�̄k|VA|�̄k〉 = −〈�k|VA|�k〉.

Thus, the Hamiltonian Hk is traceless, producing a

symmetric splitting E±
k = Ek ± �|�k|, where |�k| =

1
�

[〈�k|VA|�k〉
2 + |〈�k|VA|�̄k〉|

2]
1/2

is the magnitude of the

spin-orbit field. The spin polarization of the two resulting

eigenstates �±
k , S±

k = ±�

2
〈�+

k |σ P|�+
k 〉, defines the direction

of the spin-orbit field, yielding �k := |�k|S
+
k /|S+

k |. At the

end, the vector ��k plays the role of the k-dependent Zeeman

field, discussed in the previous paragraph, corresponding

implicitly to the choice of degeneracy lifting through the

asymmetry VA.
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S. Blügel, and Y. Mokrousov, Phys. Rev. B 90, 064406 (2014).

[39] R. Zeller, P. H. Dederichs, B. Újfalussy, L. Szunyogh, and P.

Weinberger, Phys. Rev. B 52, 8807 (1995).

[40] D. S. G. Bauer, Development of a relativistic full-potential first-

principles multiple scattering Green function method applied to

complex magnetic textures of nano structures at surfaces, Ph.D.

thesis, RWTH Aachen, 2013.

[41] N. Stefanou, H. Akai, and R. Zeller, Comput. Phys. Commun.

60, 231 (1990).

[42] N. Stefanou and R. Zeller, J. Phys.: Condens. Matter 3, 7599

(1991).

[43] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipies (Cambridge University Press, Cambridge,

1989).

[44] M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and

B. L. Györffy, Phys. Rev. B 84, 075113 (2011).

[45] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200

(1980).

[46] M. Gradhand, M. Czerner, D. V. Fedorov, P. Zahn, B. Y.

Yavorsky, L. Szunyogh, and I. Mertig, Phys. Rev. B 80, 224413

(2009).

[47] N. W. Ashcroft and D. N. Mermin, Solid State Physics

(Saunders, Philadelphia, 1976).

[48] M. Haag, C. Illg, and M. Fähnle, Phys. Rev. B 90, 134410
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