000807657 001__ 807657
000807657 005__ 20210129222710.0
000807657 0247_ $$2doi$$a10.1186/s12974-016-0512-z
000807657 0247_ $$2Handle$$a2128/10077
000807657 0247_ $$2WOS$$aWOS:000370952100001
000807657 0247_ $$2altmetric$$aaltmetric:6015845
000807657 0247_ $$2pmid$$apmid:26920550
000807657 037__ $$aFZJ-2016-02143
000807657 082__ $$a610
000807657 1001_ $$0P:(DE-HGF)0$$aIngwersen, J.$$b0
000807657 245__ $$aDual roles of the adenosine A2a receptor in autoimmune neuroinflammation
000807657 260__ $$aLondon$$bBioMed Central$$c2016
000807657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459859116_9668
000807657 3367_ $$2DataCite$$aOutput Types/Journal article
000807657 3367_ $$00$$2EndNote$$aJournal Article
000807657 3367_ $$2BibTeX$$aARTICLE
000807657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807657 3367_ $$2DRIVER$$aarticle
000807657 520__ $$aBackgroundConditions of inflammatory tissue distress are associated with high extracellular levels of adenosine, due to increased adenosine triphosphate (ATP) degradation upon cellular stress or the release of extracellular ATP upon cell death, which can be degraded to adenosine by membrane-bound ecto-enzymes like CD39 and CD73. Adenosine is recognised to mediate anti-inflammatory effects via the adenosine A2a receptor (A2aR), as shown in experimental models of arthritis. Here, using pharmacological interventions and genetic inactivation, we investigated the roles of A2aR in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).MethodsWe used two independent mouse EAE variants, i.e. active immunization in C57BL/6 with myelin oligodendrocyte glycoprotein (MOG)35-55 or transfer-EAE by proteolipid protein (PLP)139-155-stimulated T lymphocytes and EAE in mice treated with A2aR-agonist CGS21680 at different stages of disease course and in mice lacking A2aR (A2aR−/−) compared to direct wild-type littermates. In EAE, we analysed myelin-specific proliferation and cytokine synthesis ex vivo, as well as inflammation and demyelination by immunohistochemistry. In vitro, we investigated the effect of A2aR on migration of CD4+ T cells, macrophages and microglia, as well as the impact of A2aR on phagocytosis of macrophages and microglia. Statistical tests were Mann-Whitney U and Student’s t test.ResultsWe found an upregulation of A2aR in the central nervous system (CNS) in EAE, predominantly detected on T cells and macrophages/microglia within the inflamed tissue. Preventive EAE treatment with A2aR-specific agonist inhibited myelin-specific T cell proliferation ex vivo and ameliorated disease, while application of the same agonist after disease onset exacerbated non-remitting EAE progression and resulted in more severe tissue destruction. Accordingly, A2aR-deficient mice showed accelerated and exacerbated disease manifestation with increased frequencies of IFN-γ-, IL-17- and GM-CSF-producing CD4+ T helper cells and higher numbers of inflammatory lesions in the early stage. However, EAE quickly ameliorated and myelin debris accumulation was lower in A2aR−/− mice. In vitro, activation of A2aR inhibited phagocytosis of myelin by macrophages and primary microglia as well as migration of CD4+ T cells, macrophages and primary microglia.ConclusionsA2aR activation exerts a complex pattern in chronic autoimmune neurodegeneration: while providing anti-inflammatory effects on T cells and thus protection at early stages, A2aR seems to play a detrimental role during later stages of disease and may thus contribute to sustained tissue damage within the inflamed CNS.
000807657 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000807657 588__ $$aDataset connected to CrossRef
000807657 7001_ $$0P:(DE-HGF)0$$aWingerath, B.$$b1
000807657 7001_ $$0P:(DE-HGF)0$$aGraf, J.$$b2
000807657 7001_ $$0P:(DE-HGF)0$$aLepka, K.$$b3
000807657 7001_ $$0P:(DE-HGF)0$$aHofrichter, M.$$b4
000807657 7001_ $$0P:(DE-HGF)0$$aSchröter, F.$$b5
000807657 7001_ $$0P:(DE-Juel1)131711$$aWedekind, F.$$b6$$ufzj
000807657 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b7$$ufzj
000807657 7001_ $$0P:(DE-HGF)0$$aSchrader, J.$$b8
000807657 7001_ $$0P:(DE-HGF)0$$aHartung, H.-P.$$b9
000807657 7001_ $$0P:(DE-HGF)0$$aProzorovski, T.$$b10
000807657 7001_ $$0P:(DE-HGF)0$$aAktas, O.$$b11$$eCorresponding author
000807657 773__ $$0PERI:(DE-600)2156455-3$$a10.1186/s12974-016-0512-z$$gVol. 13, no. 1, p. 48$$n1$$p48$$tJournal of neuroinflammation$$v13$$x1742-2094$$y2016
000807657 8564_ $$uhttps://juser.fz-juelich.de/record/807657/files/art_10.1186_s12974-016-0512-z.pdf$$yOpenAccess
000807657 8564_ $$uhttps://juser.fz-juelich.de/record/807657/files/art_10.1186_s12974-016-0512-z.gif?subformat=icon$$xicon$$yOpenAccess
000807657 8564_ $$uhttps://juser.fz-juelich.de/record/807657/files/art_10.1186_s12974-016-0512-z.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000807657 8564_ $$uhttps://juser.fz-juelich.de/record/807657/files/art_10.1186_s12974-016-0512-z.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000807657 8564_ $$uhttps://juser.fz-juelich.de/record/807657/files/art_10.1186_s12974-016-0512-z.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000807657 8564_ $$uhttps://juser.fz-juelich.de/record/807657/files/art_10.1186_s12974-016-0512-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000807657 909CO $$ooai:juser.fz-juelich.de:807657$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000807657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131711$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000807657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000807657 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000807657 9141_ $$y2016
000807657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807657 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000807657 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000807657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROINFLAMM : 2014
000807657 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000807657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807657 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000807657 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROINFLAMM : 2014
000807657 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000807657 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000807657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807657 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000807657 980__ $$ajournal
000807657 980__ $$aVDB
000807657 980__ $$aUNRESTRICTED
000807657 980__ $$aI:(DE-Juel1)INM-2-20090406
000807657 9801_ $$aUNRESTRICTED
000807657 9801_ $$aFullTexts