000807744 001__ 807744
000807744 005__ 20240610121022.0
000807744 0247_ $$2doi$$a10.1038/srep19836
000807744 0247_ $$2Handle$$a2128/10145
000807744 0247_ $$2WOS$$aWOS:000368987800001
000807744 0247_ $$2altmetric$$aaltmetric:5092383
000807744 0247_ $$2pmid$$apmid:26830457
000807744 037__ $$aFZJ-2016-02162
000807744 082__ $$a000
000807744 1001_ $$0P:(DE-Juel1)136926$$aKobayashi, Hideki$$b0$$eCorresponding author$$ufzj
000807744 245__ $$aUniversal conformational properties of polymers in ionic nanogels
000807744 260__ $$aLondon$$bNature Publishing Group$$c2016
000807744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1460440807_4969
000807744 3367_ $$2DataCite$$aOutput Types/Journal article
000807744 3367_ $$00$$2EndNote$$aJournal Article
000807744 3367_ $$2BibTeX$$aARTICLE
000807744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000807744 3367_ $$2DRIVER$$aarticle
000807744 520__ $$aPolyelectrolyte gels are known to undergo significant conformational changes in response to external stimuli such as pH, temperature, or the dielectric constant. Specifically, an increase of the degree of ionization associated with an increasing number of counterions leads to swelling of the network. For a macroscopically large gel, which is electrostatically neutral in its interior, swelling is no longer governed by electrostatic interactions, but rather by the osmotic pressure of counterions. However, this electrostatic neutrality is typically violated for nanogels, because counterions are free to leave a gel particle. Although nanogel-swelling exhibits similar features as swelling of micro- and macrogels, another mechanism has to be relevant. Here, we use molecular dynamics simulations and scaling theory to unravel the structural properties of nanogels upon changing the electrostatic interactions. We demonstrate that the swelling of nanogels is governed by screened electrostatic interactions without a relevant contribution by the counterion osmotic pressure.
000807744 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000807744 588__ $$aDataset connected to CrossRef
000807744 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b1$$eCorresponding author$$ufzj
000807744 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep19836$$gVol. 6, p. 19836 -$$p19836 -$$tScientific reports$$v6$$x2045-2322$$y2016
000807744 8564_ $$uhttps://juser.fz-juelich.de/record/807744/files/srep19836.pdf$$yOpenAccess
000807744 8564_ $$uhttps://juser.fz-juelich.de/record/807744/files/srep19836.gif?subformat=icon$$xicon$$yOpenAccess
000807744 8564_ $$uhttps://juser.fz-juelich.de/record/807744/files/srep19836.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000807744 8564_ $$uhttps://juser.fz-juelich.de/record/807744/files/srep19836.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000807744 8564_ $$uhttps://juser.fz-juelich.de/record/807744/files/srep19836.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000807744 8564_ $$uhttps://juser.fz-juelich.de/record/807744/files/srep19836.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000807744 8767_ $$92016-01-12$$d2016-01-12$$eAPC$$jZahlung erfolgt$$pSREP-15-24714B
000807744 909CO $$ooai:juser.fz-juelich.de:807744$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000807744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136926$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000807744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000807744 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000807744 9141_ $$y2016
000807744 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000807744 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000807744 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000807744 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000807744 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2014
000807744 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000807744 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000807744 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000807744 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000807744 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2014
000807744 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000807744 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000807744 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000807744 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000807744 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000807744 9801_ $$aUNRESTRICTED
000807744 9801_ $$aFullTexts
000807744 980__ $$ajournal
000807744 980__ $$aVDB
000807744 980__ $$aUNRESTRICTED
000807744 980__ $$aI:(DE-Juel1)IAS-2-20090406
000807744 980__ $$aI:(DE-Juel1)ICS-2-20110106
000807744 980__ $$aAPC
000807744 981__ $$aI:(DE-Juel1)IBI-5-20200312
000807744 981__ $$aI:(DE-Juel1)IAS-2-20090406
000807744 981__ $$aI:(DE-Juel1)ICS-2-20110106