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Abstract

A class of microscopic stochastic models is proposed to describe 1D pedestrian trajectories obtained in laboratory

experiments. The class contains continuous first order models that are based on statistically calibrated optimal velocity

functions. More specifically we consider a model with an additive white noise and another one where the noise is

determined by the inertial Ornstein-Uhlenbeck process. Simulation results show that both stochastic models give a

good description of the characteristic relation between speed and spacing (fundamental diagram) and its variability.

However, only the inertial noise model can reproduce the observed stop-and-go waves, bimodal speed distributions,

and non-zero speed or spacing autocorrelations. This allows to identify minimal microscopic stochastic mechanisms

for the emergence of stable traffic waves.

Keywords Pedestrian dynamics, Optimal velocity model, Stochastic noise, Statistical calibration of the parameters,

Stop-and-go waves

1 Introduction

The analysis and modelling of pedestrian dynamics has attracted a lot of attention during the last decades [1, 2, 3].

Empirically data have been obtained from experiments in laboratory conditions [4, 5] with software to automatically

extract the trajectories from video recordings [6, 7]. These investigations allowed to establish many features of pedes-

trian dynamics [8], e.g. the unimodal shape of the fundamental flow-density diagram or the presence of stop-and-go

waves as characteristics of unidirectional pedestrian streams [8, 9]. Interestingly, these phenomena do not only hold for

pedestrians but are also observed for vehicle or bike motion in 1D showing a certain universality in self-driven flows

composed of human agents [10].

Numerous models have been developed to understand and analyze the characteristics of self-driven flows [1, 3, 11].

The unimodal shape of the fundamental diagram is already found in simple models like the Asymmetric Simple Exclu-

sion Process (ASEP) [10, 11, 12, 13] where it is related to the exclusion principle. More generally it is well explained

microscopically by phenomenological relations between the agent speed and distance spacing to the predecessor usu-

ally called optimal velocity (OV) function [14]. The relation reflects the tendency to respect safety spacings to avoid

collision due to unexpected movements of the predecessor. It is observed for both pedestrians [15] and drivers [16].

The speed in congested traffic seems to be proportional to the distance spacing making the time gap between the agents

constant. This constant spacing time can be interpreted as a consequence of the agent/vehicle reaction times (i.e. the

sum of the perception, decision and initiation times [17]).

Stop-and-go and clustering effects are self-organization phenomena that have been widely studied [18, 19]. Non-

linear traffic waves and instabilities were the topics of the pioneering papers in the 1950’s and early 1960’s [20]. Micro-

scopic continuous models defined by systems of differential equations were initially used [21, 22, 23]. This modelling

approach is still currently actively developed, see [24]. Inertial OV models belong to the most investigated traffic

models [14, 23, 25]. The approach is also used to model pedestrian dynamics [26]. Traffic waves in OV models are

analyzed through instability of uniform solutions [27] and mapping to macroscopic soliton equations [28], or chaotic

dynamics [29]. Several discrete cellular automata (CA) models are also elaborated to describe non-homogeneous sta-

tionary states and traffic waves (see for instance [30, 31, 32, 33] for road traffic CA models). The “slow-to-start” rules,

that can been interpreted as a reaction time of drivers out of a jam [34], allows to generate phase separations with
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metastability related to the stability of traffic waves [35, 36]. In a comparable way, a zero-range process for traffic

flow with specific backward interaction is used to understand clustering effects [37]. Generally speaking, it seems that

the introduction of delays and inertial mechanisms generates instability of the uniform solution and the emergence and

stable propagation of stop-and-go waves.

Most of the microscopic models describing nonuniform dynamics are stochastic. CA rules are generically proba-

bilistic while stochastic noises are used in continuous models [38, 39, 40, 41, 42, 43]. In pedestrian models, the noise

is used for ambiguous situations (e.g. conflicts) in which two or more behavioral alternatives are equivalent [38] or

to model heterogeneous pedestrian behaviors [44]. Few studies have shown that noise plays a major role (see [45] for

bidirectional streams and the formation of lanes). For road traffic models, probabilistic distributions of the parameters

are also used to model heterogeneous driving styles [46], and stochastic noises are introduced to model perception

errors [43] or to switch from a stationary state to another [42]. The use of white noise or time-correlated noises does

not impact the global dynamics of second order models [43]. In general, the stochasticity in continuous models does

not contribute to the emergence of collective phenomena such as stop-and-go but even tends to disturb it.

In this paper, we show that the introduction of an inertial noise (i.e. defined at second order) in a first order model

can impact the dynamics and generate stop-and-go phenomena without requirement of deterministic instabilities. Two

stochastic continuous models based on phenomenological OV functions are investigated. A white noise is introduced

at the first order within the first model, making the speed non-continuous. The noise is relaxed at the second order

through a Langevin equation for the second approach. The speeds are more regular in this last case and a stochastic

inertia is introduced. After calibration of the models, we observe by simulation that only the second inertial model is

able to give a good description of pedestrian dynamics and notably the stop-and-go wave phenomena. The paper is

organized as follows. The stochastic OV models are defined in Sec. 2 and the stability analysis of the deterministic case

is done in Sec. 3. The description of the data and the calibration of the models are presented in Sec. 4. The simulation

of the models and comparison to the real data are done in Sec. 5. We discuss and interpret the results and statistical

values of the parameters in the summary (Sec. 6).

2 Stochastic optimal velocity models

Initially, the optimal velocity model is a second-order model for which the speed is relaxed to an optimal speed depend-

ing on the spacing (headway) [14]. The relaxation is determined by an OV function V : ∆x 7→ V (∆x). Nowadays,

any approach based on the OV function is called OV model or extended OV model. The minimal OV model is [21]

dxn(t) = V (∆xn(t)) dt (1)

with xn(t) the position of agent n at time t and ∆xn(t) = xn+1(t) − xn(t) the distance spacing, xn+1(t) being the

position of the first predecessor n+1. The uniform solutions are stable in this model if the optimal speed function is in-

creasing which is a natural assumption. The minimal OV model is too simple to reasonably describe wave phenomena.

More realistic dynamics are obtained if inertia is introduced through reaction (or relaxation) time parameters. Exam-

ples are the delayed first order OV model dxn(t + b)/dt = V (∆xn(t)) [23], with b > 0 the reaction time parameter,

or the ordinary second order OV model [14]
{

dxn(t) = vn(t) dt,
dvn(t) = 1

b

[

V (∆xn(t))− vn(t)
]

dt,
(2)

with vn(t) the agent speed and b > 0 the relaxation time parameter. The OV function calibrates the fundamental

diagram while stop-and-go waves can be obtained if the reaction times are sufficiently high so that the stability condi-

tion fails. Yet, instability of homogeneous solutions is hard to control. There exists no intrinsic “hard-core” exclusion

rule in the delayed first order or second order models. Unrealistic behaviors with collisions or motion backward fre-

quently appear in congested situations [47, 48, 49]. The parameters values giving realistic stop-and-go waves with the

deterministic OV models are restricted [50, 51].

Stochastic OV models can be related to discrete models of interacting particle systems [52, 53]. Here, we propose

to use stochastic OV models by adding a stochastic noise to the continuous ordinary first order model (1). The noise is

centred and stationary, with finite variance. It models other random factors affecting the speed besides the spacing. We

use a white noise within the first model. Considering a Wiener process W (t) such that W (t+ s)−W (t) is normally

distributed with mean zero, variance s, and independent to W (t) for all t and s, the model is

dxn(t) = V (∆xn(t)) dt+ σ dWn(t), (3)

with σ the amplitude of the white noise. The speed dxn(t)/dt in this model is not continuous and the noise is not

autocorrelated. In order to introduce a more regular speed function and a non-vanishing autocorrelation of the noise,
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we use the model
{

dxn(t) = V (∆xn(t)) dt+ εn(t) dt,
dεn(t) = − 1

b εn(t) dt+ a dWn(t),
(4)

with a the amplitude of the noise and b > 0 the relaxation time parameter. Here the noise is the solution of a Langevin

equation. It is a standard Ornstein-Uhlenbeck process, for which the autocorrelation tends to zero exponentially. It

is more regular than the white noise (see Fig. 1). Both models (3) and (4) are based on the derivative of the Wiener

process. Yet none of them is a Wiener process due to the deterministic mechanism induced by the OV function. The

distributions of noise are

• centred normal with variance σ2 for the white noise model (3);

• centred normal with variance a2b/2 for the relaxed noise model (4).

Both noises have normal distributions that do not depend on the time (they are stationary) but only the second one is

autocorrelated (the use of the relaxation process makes the evolution of the noise smoother).

The Ornstein-Uhlenbeck process is already used in traffic flow to describe the driver attribute, i.e. a parameter

specific to each driver, within the generic second order model (GSOM) class [54]. Here it is directly an additive

process perturbing the speed. The random oscillations around zero make positive and negative corrections to the

optimal speed at random instants with independent increments. This behavior is consistent with action-point traffic

models and observations that drivers react at discrete random times [55, 56, 57, 58]. The model (4) is close to the

deterministic second order OV model (2). Yet with the stochastic approach, the inertia only affects the noise. As

shown in the next section, the uniform solutions are linearly stable in the models (3) and (4) in the deterministic case

where σ = a = 0 as soon as V (·) is strictly increasing. Nevertheless, the trajectories obtained describe nonuniform

solutions with stop-and-go waves (see the model (4) in Fig. 2, the simulation details are given in Sec. 5). Yet, contrary

to the unstable deterministic approaches, there are no generic problems like collisions and motion backward (see for

instance [47, 48, 59] or [60, Chap. 15]). Here, some collisions may occur due to the stochasticity, but their appearances

are scarce and not systematic.
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Figure 1: Illustrative example of a white noise (left panel) and the Ornstein-Uhlenbeck process (right panel).

3 Global stability analysis

In this section we analyze the uniform solutions where xn+1(t) − xn(t) = d and xn(t) = xn(0) + V (d) · t for all n
and all t > 0, with the deterministic OV models on an infinite line with mean spacing d ≥ 0 .

For σ = 0, the model (3) is the well-known model (1). Denoting α = V ′(d), the characteristic equation for the

system of dynamical equations linearized around the uniform solution is

λ+ α
(

1− eiθ
)

= 0. (5)

The uniform solution is globally linearly stable if the real parts of the solutions Re(λ) = −α(1 − cos(θ)) are strictly

negative for all θ ∈ (0, 2π). This is trivially the case if α = V ′(d) > 0.
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Figure 2: Trajectories on a segment of length 2 m. From top to bottom: 25 (free state), 45 (slightly congested state)

and 62 pedestrians (congested state) on the ring of length 27 m. From left to right: Real data and the calibrated models

(3) case where a = 0 for any value of b > 0 as soon as V (·) is strictly increasing. Note that the characteristic equation

and the stability conditions remain the same when the reaction time b > 0 is a function of the spacing xn+1 − xn if

b′(d) < ∞.

The linear stability condition of the classical second order OV model (2) is αb < 1/2 (see [14]). For the second

order model (4) in the deterministic case where a = 0, we have εn(t) = 0 for all n and all t in the uniform solutions

and the characteristic equation for the linear system is
[

λ+ α
(

1− eiθ
)][

λ+ 1/b
]

= 0. (6)

From the factorized form of the equation we can directly find that the real parts of the two solutions Re(λ1) = −α(1−
cos(θ)) and Re(λ2) = −1/b are strictly negative if α = V ′(d) > 0 and b > 0 for any θ ∈ (0, 2π). This proves that,
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oppositely to the OV model (2), the model (4) is globally stable in the deterministic case where a = 0 for any value of

b > 0 as soon as V (·) is strictly increasing. Note that the characteristic equation and the stability conditions remain the

same when the reaction time b > 0 is a function of the spacing xn+1 − xn if b′(d) < ∞.

4 Calibration of the parameters

4.1 Empirical data

The data we use to calibrate and evaluate the models are pedestrian trajectories obtained from experiments on a ring

with length of 27 m and width of 0.7 m under laboratory conditions [44, 61]. Several experiments with different

densities were carried out by varying the number of pedestrians from 14 to 70. In total, 11 different global densities

were considered. The initial distribution of the pedestrians was uniform. The trajectories were measured on two

segments of length 4 m using the software PeTrack [62] with a time resolution of 0.04 s (frame-rate 25 fps). The

variables used for the model calibration are the distance spacing and speed

∆x(t) = x1(t)− x(t) and vδt(t) =
1

δt

(

x(t+ δt/2)− x(t− δt/2)
)

, (7)

with x1 the position of the predecessor. The spacings are measured instantaneously while the speeds have to be

averaged over time intervals of length δt = k · 0.04 s, k being a strictly positive even integer (we take vδt(t) =
(x(t+ δt)− x(t))/δt for k = 1). The precision of the speed estimation depends on the value k. Mean value, standard

deviation or correlation of speed and spacing remain almost constant when k varies from 1 to 20. Yet we observe

for low δt speed oscillations due the steps of the pedestrians. In Fig. 3, the spacing and speed autocorrelations are

plotted for δt = 0.04, 0.4 and 0.8 s. The decrease of the curve for the spacing is regular (see Fig. 3, left panel) while

the speed autocorrelation exhibits oscillations for δt = 0.04 and 0.4 s (see Fig. 3, right panel). The frequency of the

oscillation is close to 0.7 s which corresponds to the frequency of pedestrian steps [63]. Further results not presented

here show that the frequency depends on the density (it tends to decrease as the density increases). As expected, this

phenomenon disappears when the time step is larger than the step frequency. Since stepping is not taken into account

in the model, we work in the following with the speed averaged over δt = 0.8 s to avoid eventual undesired effects of

the step frequency.

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.4

0
.8

Time (s)

A
u
to
co
rr
el
a
ti
o
n

Spacing

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.4

0
.8

Time (s)

Speed

δt = 0.04 s
δt = 0.4 s
δt = 0.8 s

Figure 3: Autocorrelation for the spacing (left panel) and for the speed (right panel). Global sample of observations.

4.2 Estimations of the parameters for the OV function

The OV function models a phenomenological relation between the speed and the spacing. Two main states are classi-

cally distinguished: (1) the free state, when the spacing is large and the speed is equal to the maximal desired speed

and (2) the congested (or interactive) state, when the spacing is small and the speed depends on the spacing. Both road

traffic and pedestrian observations show clear correlations between speed and spacing in congested regimes suggesting

that the speed function is initially proportional to the spacing [15, 16]. Therefore, we assume that the OV function is

piecewise linear

Vp(∆x) = min
{

v0,max{0, (∆x− ℓ)/T}
}

, p = (v0, T, ℓ), (8)

with v0 the desired (or maximal) speed, T the time gap and ℓ the longitudinal length of the pedestrian. We propose

to estimate these parameters microscopically by using pseudo-independent K = 5251 stationary measurements (by
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waiting 5 s between each observation and by deleting the beginning and the end of the experiments to avoid transient

effects) extracted from the sample of trajectories. We denote the observations by (∆xk, vk) (k = 1, . . . ,K) where

the speed vk is averaged over δt = 0.8 s to avoid step frequency effects (see Sec. 4.1). For a given pedestrian k, the

residuals Rk(p) of the model are

Rk(p) = Vp(∆xk)− vk. (9)

As in [64], the parameters are estimated by minimizing the empirical variance of the residuals

p̃ = argminp
∑

k R
2
k(p), p̃ = (ṽ0, T̃ , ℓ̃). (10)

This estimation by least squares maximizes the likelihood under the assumption that the residuals are independent

and normal, and has in general good properties if the noise repartition is compact. The fitting of the observations

and histogram of the residuals are given in Fig. 4. The parameters estimations are: ṽ0 = 0.92 m/s, T̃ = 1.04 s and

ℓ = 0.34 m. The R2 = 0.78 of the estimation (the proportion of the variance explained by the model) reveals a good

fit of the model. Moreover the distribution of the residuals is relatively compact. The fit can be slightly improved by

using sigmoid OV functions with 4 parameters (R2 = 0.80). Note that the parameter values remain approximately the

same if we use the instantaneous speed calculated with δt = 0.04 (we obtain ṽ0 = 0.94 m/s, T̃ = 1.02 s, ℓ = 0.34 m

and R2 = 0.78). Therefore the statistical calibration of the parameters is robust to the step frequency of the pedestrian

trajectories.
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ṽ0 = 0.92m/s
T̃ = 1.04 s
ℓ̃ = 0.34m

Observation

OV function

Residuals (m/s)

F
re
q
u
en

cy

-0.6 -0.2 0.2 0.6

0
5
0
0

1
0
0
0

1
5
0
0 σ̃R = 0.14m/s

Figure 4: Statistical estimation of the parameters (left panel) and histogram of the residuals (right panel). σ̃R is the

empirical standard deviation of the residuals. δt = 0.8 s in the calculus of the speed. Global sample of observations.

The parameter estimations are obtained with a sample of K = 5251 observations. Some estimations are done with

sub-samples of size K ′ = 100 to evaluate the precision of the estimations with the global sample. The histograms of

the estimations of 500 sub-samples are presented in Fig. 5. The estimations are relatively precise, even if the sample

size is only 100 observations. More than 90% of the estimations belong to the intervals [0.83 m/s, 1.04 m/s] for the

desired speed v0, [0.88 s, 1.21 s] for the pedestrian time gap T , and [0.29 m, 0.40 m] for the diameter ℓ. The global

dataset is more than 50 times bigger than the sub-samples. Therefore, we can deduce that the estimations obtained with

the global sample are relatively precise.
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4.3 Estimations of the parameters for the noise

The empirical estimation of variance of the residuals maximizing the likelihood is σ̃2
R = 1

K

∑

k R
2
k(p̃). In the models,

the difference of the Wiener process W (t+ δt)−Wn(t) is normally distributed with variance equal to the time step δt
for all t. Therefore within the model (3), the estimation of σ is

σ̃ = σ̃R

√
δt. (11)

For the model (4), the stationary variance of the Ornstein-Uhlenbeck process is var(ε(t)) = a2b/2 while the auto-

covariance at time δt is cov(ε(t+δt), ε(t)) = a2be−δt/b/2. Here ‘stationary’ means that the parameters do not depend

on time. This is reasonable with the data since initial and ending observations of transient states are not considered.

These relations allow to obtain the estimators for b and a

b̃ = −δt/ log(c̃δt) and ã = σ̃R

√

2/b̃ (12)

with c̃δt = cov(ε(t+ δt), ε(t))/ var(ε(t)) the empirical autocorrelation of the process ε(t). The estimations for all the

data are σ̃ ≈ 0.13 ms−1/2, b̃ ≈ 4.38 s and ã ≈ 0.09 ms−3/2. Note that the value of the relaxation time b is close to

5 s that is 10 times larger than the reaction (or relaxation) time τ ≈ 0.5 s generally used as an input parameter with

force-based pedestrian models (see for instance [38], the value is in the order of the measured pedestrian reaction time

[65]). The histograms of the estimations obtained with sub-samples of K ′ = 100 observations are plotted in Fig. 6.

We observe that more than 90% of the estimations belongs to the intervals [0.11 m−1/2, 0.14 m−1/2] for the noise

amplitude σ, [0.08 ms−3/2, 0.12 ms−3/2] for the amplitude of the relaxed noise a, and [2.71 s, 6.75 s] for the relaxation

time b. Here again, the estimations obtained are relatively precise, even if the sub-sample size is quite small. Only

the parameter b is more fluctuating, with a range of ±2 s in the 90% confidence interval. Yet the global sample size is

approximately 50 times bigger than the one of the sub-samples, making the estimations of the noise parameters with

all the data relatively precise.
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Figure 6: Histogram of the estimations for the parameters of the noise obtained with sub-samples of 100 observations.

The vertical dotted lines are the estimations with the global sample of observations.

Estimations by class of spacing show clear relations between the noise parameters and this variable. The results are

shown in Fig. 7. We can see for σ̃ and b̃ particular uni-modal shapes in the congested phase where ∆x ≤ ℓ + v0T ≈
1.3 m. For the free phase where ∆x ≥ ℓ+ v0, the values are relatively constant. The shape of the parameter ã is more

irregular. It will be assumed to be constant for ∆x < 0.95 m and ∆x ≥ 0.95 m, respectively, in the simulations.
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5 Simulation results

In the analysis of complex systems, the top-down method consists in calibrating the parameters of a microscopic model

in order to reproduce observed macroscopic behavior. It requires knowledge about the relation between the parameter

values and the macroscopic properties of the model (i.e. sensitivity analysis). The top-down approach has been mainly

used in particle physics where the microscopic particle behavior is unknown (only macroscopic quantities such as the

temperature are measured). In this study, the microscopic performances (i.e. the trajectories) are observed and directly

used to calibrate the parameters. The macroscopic behaviors are observed by simulation and used to validate, or not,

the calibrated models. This bottom-up approach allows to control both local and global dynamics.

Here, we evaluate the models (3) and (4) by comparing simulation results to the real data. A similar setup as in the

real experiments is reproduced for the simulations (from 14 to 70 pedestrians on a ring of length 27 m with uniform

initial configuration). The models are simulated by using explicit Euler-Maruyama schemes [66]. The discretisation of

the white noise model (3) is

xn(t+ dt) = xn(t) + dt Vp̃(∆xn(t)) +
√
dt σ̃ ξn(t), (13)

while the discrete relaxed noise model (4) is

{

xn(t+ dt) = xn(t) + dt Vp̃(∆xn(t)) + dt εn(t),

εn(t+ dt) = (1− dt/b̃) εn(t) +
√
dt ã ξn(t),

(14)

with (ξn(t), n, t) independent normal random variables. The processes are Makovian chains where the state of the

system at time t solely depends on the state at time t − dt. The time step dt is set to 10−3 s for that the numerical

scheme converges and that the discrete solutions Eqs. (13) and (14) are close to the continuous ones Eqs. (3) and (4).

The parameter values are the ones given in Sec. 4 (see Figs. 4 and 7). The time step δt for the calculation of the speed

is set to 0.8 s to avoid the step effect observed in the data (see Sec. 4.1). Yet, most of the following presented results

remain valid for smaller value of this parameter (i.e. for a more precise description of the speed).

The models are firstly evaluated by looking at the mean, standard deviation and correlation of the speed and spacing

for the global sample of observations (see Table 1). Both models (3) and (4) present a good fit to the real data. Only the

correlation between the speed and predecessor speed with the model (3) is significantly different from the data. Such

statement was expected since the speeds are independent random variables within the white noise model.

Variables ∆x vδt ∆x
1

v
1

δt

Data Real Model (3) Model (4) Real (3) (4) Real (3) (4) Real (3) (4)

Mean 0.68 0.67 0.67 0.32 0.31 0.32 0.68 0.67 0.67 0.32 0.31 0.31

Std-dev 0.33 0.33 0.34 0.30 0.29 0.30 0.33 0.32 0.35 0.30 0.29 0.30

Corr. ∆x 1 1 1 0.87 0.85 0.87 0.79 0.81 0.76 0.87 0.86 0.87

vδt 0.87 0.85 0.87 1 1 1 0.85 0.79 0.84 0.96 0.84 0.97

Table 1: Mean, standard deviation (in m and m/s) and correlation for the spacing ∆x and speed vδt of a pedestrian

and his/her predecessor (∆x1 and v1δt) for global sample of observations. δt = 0.8 s.

The trajectories for 25, 45 and 62 pedestrians are presented in Fig. 2. Some stop-and-go waves propagate when

the density increases (see Fig. 2, middle and bottom panels). The trajectories of the white noise model (3) are very

irregular, especially for high density levels. Moreover we do not observe stable propagation of stop-and-go waves in

this model. The trajectories are qualitatively very similar to the data for any density level of the relaxed noise model

(4). Even if the uniform solutions are linearly stable for the model (4) in the deterministic case, the trajectories obtained

describe nonuniform solutions with stop-and-go waves. Oppositely to the unstable deterministic approaches, we do

not observe the generic collision and motion backward problems (see for instance [47, 48]).

The good fitting of the relaxed model (4) is confirmed when observing the autocorrelation of the speed and spacing

(see Fig. 8). The values obtained are underestimated with the model (3), while the fit is reasonable with the model (4).

This is especially the case with the speed, for which the autocorrelation vanishes by construction for any time higher

that the averaging time δt = 0.8 s with the model (3) (it linearly decreases from one to zero for times smaller than δt
due to the moving average). The speed autocorrelation qualitatively decreases exponentially for the data and the model

(4).
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Figure 8: Autocorrelation function for the spacing (top panels) and the speed (bottom panels) for N = 25 (free state,

left panels), N = 45 (slightly congested state, middle panels) and N = 62 (congested state, right panels).

The speed distributions in different spacing regimes are plotted in Fig. 9. We observe bimodal distributions for

intermediate spacings within the data and model (4) (see Fig. 9, middle panel), corresponding to the presence of stable

stop-and-go waves, whereas the distribution is unimodal in the white noise model (3). This observation confirms the

necessity of using inertial mechanisms in the models to describe stable traffic waves. This is in agreement with the

results obtained for the classical deterministic approaches [14, 27, 51]. Note that further simulations show that this

phenomenon does not depend on the value of the time step dt in the numerical scheme, as soon as it is small enough

(we observed stop-and-go for dt up to 0.5 s; at least we should have dt ≤ min{T, b}). Therefore the stop-and-go waves

are a characteristic of the continuous model (4) and not a discretisation effect.
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Figure 9: Probability density function of the speed vδt with δt = 0.8 s for different regimes of the spacing ∆x with

the global sample of observations.

6 Conclusion

A class of continuous pedestrian speed (i.e. first order) models based on phenomenological OV functions and stochastic

noises is proposed and calibrated with real trajectories. Two models are compared: a white noise and a relaxed

one described by the Ornstein-Uhlenbeck process. Both stochastic models give realistic descriptions of pedestrian

trajectories. Mean values and correlations of the speed and spacing are relatively well fitted though piecewise linear

OV function with three parameters. Yet only the relaxed noise model allows to obtain stop-and-go phenomena at

congested density levels with bimodal speed distributions, and non-zero speed and spacing autocorrelations. Additive

white noises are not sufficient to describe stable wave phenomena within first order OV models.

As the classical deterministic OV models, inertia and delay mechanisms are used to generate collective waves. Yet

the inertia here is stochastic, without deterministic instability of the uniform solution. Also, and oppositely to classical

9



models, there is no requirement of using nonlinear dynamics to obtain traffic waves within the stochastic OV approach.

Moreover, we do not observe the generic problems of collision and motion backward that are unfortunately frequently

obtained with the unstable deterministic approaches. The statistical estimation of the relaxation time is close to 5 s

for the noisy model, while it is generally an input parameter for the reaction time around 0.5 s for the deterministic

Ansatz. Also, the relaxation mechanism of the stochastic approach is not that of the classical models. This makes the

inertial stochastic OV model a new minimal way to describe stop-and-go phenomena. For pedestrian dynamics in two

dimensions, the speed model has to be completed by a direction model.
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