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Realization of Minimum and 
Maximum Gate Function in Ta O -
based Memristive Devices
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Redox-based resistive switching devices (ReRAM) are considered key enablers for future non-volatile 

memory and logic applications. Functionally enhanced ReRAM devices could enable new hardware 

concepts, e.g. logic-in-memory or neuromorphic applications. In this work, we demonstrate the 

implementation of ReRAM-based fuzzy logic gates using Ta O  devices to enable analogous Minimum 

and Maximum operations. The realized gates consist of two anti-serially connected ReRAM cells 

 cycles. By means of 

future.

Resistive switching memories (ReRAM) are considered as highly attractive emerging technology to implement 
future high-density non-volatile memory or storage1–4. ReRAM devices o�er low operating voltages, excellent 
scaling properties and compatibility to 4F2 nanocrossbar arrays5. In such nanocrossbar arrays either a bipolar 
selector in series (1S1R)6 or a complementary resistive switch (1CRS)7 is used to prevent undesired sneak paths.

Besides the memory operation, several logic approaches based on ReRAM devices are suggested to overcome 
the von Neumann bottleneck3,4,8,9. For example, ReRAM cells can be used to implement look-up-tables, replacing 
SRAM memory10–12. Alternatively, ReRAM cell arrays can be used as programmable interconnects, as for example 
in the famous CMOL/FPNI FPGA concept13,14. Structures consisting of two ReRAM devices are used in various 
FPGA-like concepts either in serial or anti-serial con�guration15. A two-input-one-output ReRAM structure is 
used for routing16, structural identical to the complementary resistive switch structure with accessible middle 
electrode which we use for implementation of MIN/MAX gates (Fig. 1). �e approach which we follow in this 
paper uses ReRAM devices directly as logic operating device. Boolean logic approaches falling in this category 
are the (material) implication logic17 and CRS logic8,18,19, for example. Both approaches are in principle com-
patible to crossbar arrays when either 1S1R or 1CRS is used20. Beyond that, the CRS logic concept8,19 features a 
computing-in-memory approach to overcome the von-Neumann bottleneck21,22. From a theoretical perspective, 
Šuch and Klimo suggested to use two-memristor-circuits to implement Minimum and Maximum gates23. In gen-
eral, one of these three-terminal devices has two inputs and detects the higher or lower input voltage. For binary 
considerations these devices are equivalent to logical AND/OR gates24. �ese gates could be used in analogue 
signal processing and could help to realize small-size sorting networks25 taking some limiting properties into 
account26. �e proposed gate structure consists of two anti-serially connected devices, i.e. the device stack is very 
similar to a conventional complementary resistive switch, but o�ers a third terminal at the middle electrode16,27,28.

Recently, we have demonstrated and characterized such three terminal CRS devices29. Šuch et al. have shown 
that the behavior of real memristive devices strongly diverges from ideal memristor behavior. However, a proper 
Minimum or Maximum gate functionality is enabled by adding some additional constraints in terms of input 
signal amplitude28. Nevertheless, being aware of those constraints, which will be discussed in detail, ReRAMs 
are well suited for the implementation of memristive fuzzy logic gates. �e feasibility of both Minimum and 
Maximum function is experimentally demonstrated in this paper by using integrated CRS devices, which o�er an 
access to the middle electrode.
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Concepts
CRS mechanism and the logic function. �e CRS device is based on two anti-serial integrated ReRAM 
cells, called bottom cell (BC) and top cell (TC). Each cell can toggle between a high resistive state (HRS) and a low 
resistive state (LRS). Here, two Ta2O5-based ReRAMs are used as illustrated in Fig. 1. �e active switching Ta2O5 
layer of each cell is sandwiched between a Pt and a Ta electrode. �e �nal CRS stack is symmetric. �erefore, the 
polarity of the I-V characteristic does not depend on which electrode (top Pt or bottom Pt) the voltage is applied. 
Due to the anti-serial stacking the two single cells always switch complementarily. Figure 1 depicts the two possi-
bilities of vertical stacked CRS devices. �e resulting I-V curves for both cases are indistinguishable. However, the 
voltage polarity, where BC and TC resets or sets, di�ers for both stacks. Figure 1a shows the more common CRS 
layer stack (Pt/Ta2O5/Ta/Ta2O5/Pt). Starting with the CRS state LRS/HRS (TC in LRS and BC in HRS), a positive 
voltage is applied to the top Pt, whereas the bottom Pt is grounded. At threshold voltage Vth,1 the BC sets to LRS 
and the whole device switches to the transition state LRS/LRS. Increasing the voltage to V >  Vth,2 the TC resets, 
i.e. the CRS switches to HRS/LRS. If a positive voltage is applied again, the CRS state will not change anymore and 
stays in HRS/LRS. Only by applying a negative voltage, the CRS devices switches to the transition state LRS/LRS, 
since the TC sets at Vth,3. Finally, at Vth,4, the devices switches back to the initial state LRS/HRS by resetting the BC. 
�e second CRS stack in Fig. 1b o�ers a reversed switching of BC and TC in comparison to Fig. 1a, but this is not 
observed in the I-V characteristic as both stacks o�er the same behavior.

Only the two non-transition CRS states (LRS/HRS, HRS/LRS) are interesting for the logic functions. �e cru-
cial points for the implementation of Minimum (MIN) and Maximum (MAX) logic are:

Dependent on the applied voltage, the stacked device o�ers reversible toggling between two resistive states 
(which is o�ered by the CRS).
In both CRS states, one cell is always in the high resistance state, whereas the other one is in the low resistive 
state.
�e resistance of one cell being in the HRS is always much higher than the resistance of the other cell being 
in the LRS.

For the MIN/MAX logic, the CRS is here considered as a three-terminal (T1, T2 and T3) gate device as illus-
trated in Fig. 2. Two terminals (top and bottom Pt) are used for the input signals q and p. �e third terminal (mid-
dle electrode) is used for the output signal. During the application, T1 and T2 is either set to low potential ‘L’ or 
to high potential ‘H’. At �rst, two static resistors instead of TC and BC with R1 and R2 are assumed, to understand 
more easily, how the device behaves in sense of the gate logic. �e voltage out detected at T3 is given by
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For R1 ≫  R2 Equation (1) is simpli�ed to out ≈ p. �is can physically be interpreted as follows. �e voltage applied 
to the T1 drops completely across R1 and the output voltage measured at T3 is equivalent to the input voltage at 
T2 (independently of high or low potential). �erefore, the MIN/MAX gate functionality cannot be implemented 
in this static con�guration (by classical resistors). However, the CRS device o�ers two anti-serially integrated 
dynamic resistors. Depending on the current CRS state and the applied signals to T1 and T2, it switches from 
LRS/HRS to HRS/LRS and vice versa. �is switching property allows the implementation of the MIN/MAX oper-
ation and is described in detail in the following sections.

Figure 2b depicts the truth table for the MIN/MAX functions. It illustrates the device dynamics for all possible 
combinations of the applied in signals q and p and the resulting out signal. First, the CRS is initialized by setting q to 
‘H’ and p to ‘L’, which is equivalent to applying a positive voltage to the top Pt, whereas the bottom Pt is grounded 
(cf. Fig. 1). �is step is only performed at the beginning and not repeated for each combination of q and p. Consider, 

Figure 1. (a) CRS stack, equivalent circuit and switching scheme for Minimum gate. (b) Is the reversed CRS 
stack with corresponding equivalent circuit and the resulting switching scheme for Maximum gate. Next to the 
purple colored ideal I-V curve, the actual CRS state is indicated by a resistance scheme. �e threshold voltages 
Vth,1, Vth,2, Vth,3 and Vth,4 specify where the BC/TC resets/sets.
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the initialization is not required for the demonstrated logic application, but it facilitates the veri�cation and the gate 
dynamics in an easier way. Secondly, the observation of the switching event depends on the previous state (within 
the time resolution of the used measurement equipment). Nevertheless, the �nal device state and the linked out sig-
nal is speci�c for each combination of q and p. �e MIN function is realized by the CRS stack illustrated in Fig. 1a. 
Initialization toggles the stack into the HRS/LRS state. In the �rst step, q =  ‘L’ and p =  ‘L’ are applied to T1 and T2. In 
total, no voltage drops across the complete stack, therefore TC remains in the HRS, whereas BC is in the LRS. �e sig-
nal applied to T1 drops completely across the TC (being in HRS) and the output at T3 is equivalent to the input volt-
age applied to T2. Next, two asymmetric signals q =  ‘H’ and p =  ‘L’ are applied. �is is identical to the initialization 
step and the CRS device does not switch, therefore out =  p =  ‘L’ is measured at T3. In the third step, the polarities at 
T1 and T2 are switched to q =  ‘L’, p =  ‘H’. �is is equal to the condition, where in Fig. 1a, a negative voltage is applied 
to T1, whereas T2 is grounded. �e TC toggles from the HRS to the LRS and the BC makes transition from the LRS 
to the HRS (→  LRS/HRS). A�er switching of the CRS state, the applied voltage at T2 drops completely across the BC 
(being in HRS). �erefore, the output signal at T3 is equal to the voltage applied at T1 (q =  ‘L’), since there is hardly 
any voltage drop across the TC (being in LRS). For the condition q =  ‘H’ and p =  ‘H’, there is again no voltage drop 
across the whole device stack. �erefore, the CRS stays in the LRS/HRS state and out =  q =  ‘H’ is measured at T3. For 
each combination of q and p, the MIN gate device always delivers the minimal applied potential as the output signal.

Figure 1b shows the CRS stack, which is used for the implementation of the MAX gate function. �e initializa-
tion, applying q =  ‘H’ and p =  ‘L’ switches the device to the LRS/HRS state. �is is due to the reversed stacking of 
the two cells. For the trivial condition q =  ‘L’ and p =  ‘L’, out =  q =  ‘L’ is measured, since no switching is expected. 
Applying q =  ‘H’ and p =  ‘L’ does not change the device state and at T3, the signal out =  q =  ‘H’ is detected. In the 
third step with q =  ‘L’ and p =  ‘H’ the CRS toggles to the HRS/LRS state so that out =  p =  ‘H’ is measured at T3. 
For the last condition, where q =  ‘H’ and p =  ‘H’ is applied to T1 and T2, there is not any voltage drop across the 
CRS stack, which remains in the HRS/LRS state. Hence, ‘H’ measured at the output terminal T3.

Results
Device Characterization. �e three-terminal CRS device o�ers an access to the middle electrode (T3). 
Applying the voltage to T3 and grounding T1 allows to perform separate electroforming and bipolar switching 
on the TC only. �e same applies for the BC by using the electrodes T3 and T2. Figure 3 summarizes the elec-
trometric characterization of the TC and the BC. Figure 3a corresponds to the TC and Fig. 3b is related to the 
BC. �e graphics are split up into the top graph showing the I-V curve on the linear scale and the bottom graph 
demonstrating the R-V curve on the logarithmic scale. �e grey dotted line indicates the electroforming on the 
single cell. �e initial resistance Rini is in the range of several hundred kΩ and few MΩ. Around 1.7 V, the current 
increases abruptly due to the formed conductive �lament and is limited by the instrumental current compliance 
(CC) at 500 μA. �e CC limits the conductivity of the cell. Lower CC decreases the maximal operation current 
in the single bipolar switching cell and in the �nal CRS device29. �e cell is formed into the LRS around 1 kΩ 
and o�ers an ohmic I-V and R-V characteristic. �e blue line describes the bipolar switching cycle. �e gradual 
RESET process starts by applying negative voltage less than − 0.6 V. Finally, the cells end up in the non-ohmic 
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Figure 2. (a) Generalized measurement schema for the MIN/MAX function. (b) Truth table: MIN/MAX 
function for the di�erent conditions of input signals q and p (2nd and 3rd column). �e signals q and p are 
applied to the respective terminals T1 and T2. �at is either a low potential (‘L’) or a high potential (‘H’). At 
T3 the output voltage out (either ‘L’ or ‘H’) is detected, which depends on the gate function and the inputs for 
q and p. In general, an initialization step is not required. However, this step is here performed to predict the 
observed switching behavior of the CRS device (4th and 5th column). �e actual switching process depends on 
the previous state, the �nal result (6th and 7th column, red labeled) is independent though.
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HRS resistance RHRS =  ~100 kΩ… ~1 MΩ. �e abrupt SET occurs for positive voltage polarity around 1 V. �e 
ohmic LRS resistance RLRS is around 1 kΩ. A�er the RESET and SET process respectively, the read operation is 
performed by sweeping the voltage to ± 0.5 V (red/green dashed line). �e read data shows a similar (positive/
negative polarity) resistance ratio of ROFF/RON ≈  100… 1000, which is su�cient for the MIN and MAX logic oper-
ation regarding the considerations in the previous section. Additionally, an endurance test has been performed 
by microsecond pulses (c, d). �e cell resistance has been measured a�er RESET and SET process respectively by 
applying a read voltage Vread =  0.2 V. Figure 3c depicts the complete data points up to 104 cycles exhibiting a clear 
window without using any target resistance checking algorithm. Figure 3d shows the endurance test up to 106 
cycles with logarithmically measured points.

To achieve the self-limiting and non-linear I-V illustrated in Fig. 1 the CRS contact mode is needed, i.e. the 
forcing voltages are applied to T1 and T2. Figure 4a depicts the quasi-static I-V sweep on the total CRS stack, 
where the voltage is applied to T1, whereas T2 is grounded. �e I-V curves are similar for both gate devices. 
Due to the controlled separate forming procedure by using low CC, the maximal operation current is less than 
500 μA. In contrast to the bipolar switching, the CRS operation inherently o�ers the current-self-limiting func-
tion. �e symmetric I-V clearly shows SET and RESET events of the BC and TC for positive and negative volt-
age polarity as described in the previous section. Figure 4b shows the transient currents at pulse amplitude of 
2.4 V and width of few milliseconds. �e pulse behavior is more signi�cant for the real applications than the 
quasi-static performance. During the pulse characterization, the CRS state switches by the voltage stimulus and 
the response is detected as the current peak. �ese Ta2O5-based CRS devices o�er high endurance up to 106 
switching cycles29.

MIN Gate Function. Exemplary implementations of the MIN function are summarized in Fig. 5. Additional 
measurements are attached in the Supplementary Information. �e logic operation is realized by three di�erent 
voltage modes: voltage sweep (a), base voltage (b) and voltage pulse (c). �e experiment is conducted for di�erent 
voltage values for ‘L’ and ‘H’ to demonstrate the �exibility of the gate terminal. �e maximal applied voltage, given 
by the di�erence of high and low potential, is the crucial point for toggling the states.

�e dynamic and static behaviors of the CRS devices are plotted as a function of time. �e resistance 
scheme at the top indicates the �nal CRS state. �e upper two signal lines show the voltages at T1 and T2. �e 
third line in Fig. 5(a,c) represents the measured current, whereas the lowest signal line shows the out voltage 
at T3. If a change of the CRS state is observable in the measurement (abrupt voltage change or current spike), 
the switching is highlighted and illustrated explicitly by the resistance scheme at the bottom. Initially, the CRS 
device is set to the initial state by applying ‘H’ to T1 and ‘L’ to T2. �e initialization is not shown, since it is 

Figure 3. Electrometric, quasi-static characterization of single TC (a) and BC (b). �e upper graph in (a,b) 
shows the I-V curve, whereas the lower one shows the derived R-V characteristic. Prior to any bipolar switching 
cycle (blue line), the TC and BC are formed separately (grey dotted line). Additionally, reading sweep a�er 
RESET (red dashed line) and reading sweep a�er SET (green dashed line) are shown. (c,d) show the endurance 
measurement data on single bipolar switching cell. Complete endurance data points up to 104 cycles (c) and 
logarithmically measured endurance data points up to 106 cycles (d).
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not required for the Minimum function. However, this process allows to verify the correct behavior of out 
at T3 for the �rst condition of the inputs q and p. �e same sequence of the four di�erent combination of q 
and p is used as introduced in the truth table of Fig. 2b. Consider, the demonstrated sequence does not have 
any impact on the �nal logic result. However, it could have an impact on the switching dynamics of the out 
signal at T3. �e outputs are independent of the voltage mode for a certain combination of q and p. In each 
case, the device delivers the minimum value of the two inputs and behaves as the MIN gate. Figure 5b shows 
the base voltage mode operation of the CRS device (applying of constant voltage levels). �ere is no current 
signal shown, since switching dynamics takes place in the rising ramp and are not detected. Nevertheless, for 
q =  ‘L’ and p =  ‘H’ the CRS device changes the states. Due to the abrupt voltage increase of the applied base 
voltages and the limited time resolution, the switching is not detected by the experimental equipment. �e 

Figure 4. Electrometric characterization on the complete CRS stack. (a) Quasi-static I-V sweep and (b) 
transient current measurement with millisecond voltage pulses.

Figure 5. �e MIN operation is implemented by three di�erent voltage modes: quasi-static voltage sweep (a), 
base voltage (b) and voltage pulse (c). �e resistance scheme at the top indicates the �nal CRS state. If a change 
of the CRS state is observable in the measurement, the switching is illustrated explicitly by the resistance scheme 
at the bottom. �e graphs show from top to bottom: voltage signal lines at T1 and T2, current signal line (only 
(a,c)) and the detected voltage signal at T3. (b) does not include the current signal line, since no switching 
dynamics are detected. ‘H’ (high potential) and ‘L’ (low potential) refer to the applied voltage level and the 
recorded output signal, respectively. ‘L’ and ‘H’ are not �xed to any certain values as demonstrated by the three 
examples (a–c).
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switching dynamic in the measured current (spike) and the voltage at T3 is observable in Fig. 5(a,c). During 
sweeping q to 0.6 V and p to 3 V, the CRS device initially does not change the state, shown in Fig. 5a, since 
the total applied voltage is too low and the voltage at the T3 increases towards 3 V instead of 0.6 V. Whenever 
the total applied voltage is su�cient, the CRS toggles from HRS/LRS to LRS/HRS and the voltage at T3 drops 
abruptly to 0.6 V. An equal sudden voltage drop is observed for the pulsed mode (Fig. 5c), as the CRS device 
changes the state.

�e long sweeping time in Fig. 5a for q =  ‘H’ and p =  ‘H’ (3 V) in comparison to the other previous cases is 
only due to the experimental setup. �e automatically adjusted sweeping rate depends on the measured current 
level. For the condition q =  p, no voltage drops across the complete stack and only noise current is detected during 
the voltage sweeping. Hence, the same is true for the condition q =  p =  ‘L’ (0.6 V). Here, the sweeping time is �ve 
times shorter for the last case, since the voltage amplitude is also �ve times lower.

MAX Gate Function. �e MAX gate function is realized by the reversed CRS stack (cf. Fig. 1b). Analogous 
to the MIN gate, the CRS device is also initialized, although it is not essential for the correct operation. Figure 6 
summarizes the results for the voltage sweep (cf. Fig. 6a), the base voltage (cf. Fig. 6b) and the voltage pulse 
mode (cf. Fig. 6c). To demonstrate that the MAX gate does not work exclusively for �xed input values for 
‘L’ and ‘H’, di�erent low and high potentials are applied. �e composition of Fig. 6 is completely analogous 
to the previous MIN function. �e out signal always delivers the maximal value of q and p, regardless of the 
applied voltage input signal. �e Supplementary Information includes further examples. �e initialization 
voltage polarity and the sequence for q and p have been changed to demonstrate that there is not any impact 
on the �nal result.

Discussion
As experimentally shown, the result of the MIN and MAX operation is not directly available at the output out, but 
a certain settling time of the gate is required. Mainly, the settling time depends on the voltage amplitude applied 
to T1 and T2, which means that for small signals or ramp signals with slow slew rate MIN and MAX operation 
will take longer than for fast pulses o�ering larger voltage amplitudes. �e demonstrated pulse driven applica-
tion is limited by the impedance converter, which supports a bandwidth of 8 MHz and a slew rate up to 2.8 V/μs.  
�e MIN/MAX gates have been operated in the millisecond-pulse range, since it guarantees the detection of 
abrupt voltage changes occurring as a result of the switching dynamics. However, sensing the switching kinetics 
is not required as long as the CRS device works properly. �e switching dynamics have been shown merely to 
demonstrate the functionality of the device logic. �e gate device does not exhibit any limitation regarding the 
operation speed, since the ReRAM o�ers a feasible switching (write operation) speed below 200 ps30. �erefore, 
the challenge is to optimize the sensing of the out voltage signal. An impedance converter with high input resist-
ance, wide bandwidth and high slew rate would be an optimal sensing device. However, this quality of circuitry 
is rather uncommon for integrated sense ampli�cation and stages with poorer input impedances are established. 

Figure 6. �e MAX gate function is implemented by three di�erent voltage modes: quasi-static voltage sweep 
(a), base voltage (b) and voltage pulse (c). �e resistance scheme at the top indicates the �nal CRS state. If a 
change of the CRS state is observable in the measurement, the switching is illustrated explicitly by the resistance 
scheme at the bottom. �e graphs show from top to bottom: voltage signal lines at T1 and T2, current signal line 
(only (a,c)) and the detected voltage signal at T3. (b) does not include the current signal line, since no switching 
dynamics are detected. ‘H’ (high potential) and ‘L’ (low potential) refer to the applied voltage level and the 
recorded output signal, respectively. ‘L’ and ‘H’ are not �xed to any certain values as demonstrated by the three 
examples (a–c).
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So in general, the input impedance of elements of the next logic stage has an impact on the current stage, i.e. the 
loading of the out voltage signal has to be considered for circuit design. For many intended applications like audio 
signal processing the timing constraint is relaxed since the operation speed of the analogue gates in the range of 
microsecond would be su�cient.

�e value of ‘L’ or ‘H’ is not theoretically limited (consider, the impedance converter supplies a limited out 
voltage; here: ± 12 V). However with respect to the considerations in the section about the concepts, a limitation 
regarding the gate operations is given by the input di�erence of the low and the high potential. �e operation 
voltage given by this di�erence has to be at least equal or larger than Vth,2 and Vth,4, respectively. Otherwise the 
CRS would behave as static and cannot meet all requirements for the MIN/MAX gate function. Furthermore, the 
potential di�erence, especially for the pulse mode, has to be considered, since the total voltage drop determines 
the switching kinetics, which is dominated by the non-linear voltage-time characteristic of the ReRAM31–34. �e 
voltage drop across the device has to be su�cient so that the CRS device switches at the given pulse width. Further 
optimization of input signal di�erences could be achieved by modifying other pulse parameters, e.g. rising and 
falling time. Another approach is to decrease the minimal required operation voltage (Vth,2 and Vth,4) by material 
engineering of ReRAM devices.

In terms of concatenability, the presented MIN and MAX logic gates o�er limited performance since there is 
no signal restoration within the memristive device. One option is to add analog bu�ers in the circuitry. However, 
small circuit blocks without bu�ers will work properly, for example implementation of area and energy e�cient 
memristive sorting networks. Alternatively, one can use a clocked transistor-based scheme for cascading16. �is 
scheme also enables proper forming.

Compared to conventional CMOS approaches, the presented ReRAM approach o�ers smaller unit array 
and superior scaling properties. A basic requirement to keep the power consumption low is to use ReRAM 
devices o�ering large high resistive states (HRS) and fast switching from LRS/HRS to HRS/LRS. In general, 
further improvements of ReRAM cell performance in terms of reliability, cycle-to-cycle variance and endur-
ance are required to enable ReRAM based memory and logic applications. Although ReRAM devices enable 
energy-e�cient operations in principle35, the question whether the energy-e�ciency of ReRAM-type MIN/MAX 
gate-based circuits is better than comparable CMOS circuit cannot be answered without knowing the area of 
application (e.g. sorting or audio signal processing) and actual circuit implementation.

Conclusion
In this work, we have demonstrated the MIN and the MAX gate functionality in Ta2O5-based memristive 
devices o�ering an endurance up to 106 cycles. In contrast to ideal memristors, the input voltage di�erence is 
the crucial parameter since settling time of the output signal strongly dependents on the input signal di�erence. 
Technologically, the MIN and MAX gates can be directly derived from integrated CRS devices by adding an 
access wire to the middle electrode. Due to the ultra-small gate size interesting analogous processing tasks such 
as sorting networks could be implemented e�ciently in the future.

Methods
Device Fabrication. Two types of devices have been fabricated, one for the MIN gate and the other one for 
the MAX gate. In both cases, the starting point is a thermally oxidized p-type Silicon wafer. Firstly, 5 nm Titanium 
(Ti) (as adhesion layer) and 30 nm Platinum (Pt) are deposited by sputtering. Next, these layers are patterned 
with the bottom electrode layer. �is is achieved by covering the sample with photoresist, patterning the resist by 
photolithography and transferring the resist pattern into the metals by chemical and physical dry etching. For the 
MIN gate device, 10 nm-thick Tantalum oxide (Ta2O5) and 10 nm-thick Tantalum (Ta) are deposited. Both layers 
are patterned as middle electrode. At last, 10 nm-thick Ta2O5 and 25 nm-thick Pt are deposited and patterned as 
top electrode. �e SEM image of the vertical CRS stack for the MIN gate is shown in Supplementary Fig. S1a. 
�e three in- and output terminals (T1, T2 and T3) are displayed additionally. �e number next to the T1 and T2 
contact pads indicates the line width.

For the MAX gate device, a planar CRS device has been fabricated by connecting two single cells 
anti-serially. In contrast to the vertical stack, which is also possible here, planar CRS structure is easier to 
realize and requires less processing steps. A�er the bottom electrode layer is patterned (due to the planar CRS 
structure, this Pt layer serves as the middle electrode contact T3 in the �nal device; cf. Supplementary Fig. S1b), 
10 nm-thick Ta2O5, 10 nm-thick Ta and 25 nm-thick Pt are deposited. �ese �lms are structured by the top 
electrode layer (Due to the planar CRS structure, one Pt contact is used as top electrode T1 and the other 
one as bottom electrode T2; cf. Supplementary Fig. S1b). �e SEM image of the MAX gate device is shown in 
Supplementary Fig. S1b.

Deposition of Ta, Ti and Pt is performed by DC sputtering using a corresponding pure metal target and 
argon as sputtering gas, whereas the Ta2O5 thin �lm is grown by RF reactive sputtering using the Ta target and an 
oxygen-argon gas mixture. �e process pressure is always around 2 ×  10−2 mbar.

Electrical Characterization. All electrometric measurements (quasi-static and pulsed) have been per-
formed on the Keithley 4200-SCS and the Agilent B1500A. For quasi-static measurements the out voltage at T3 is 
detected by a voltage measuring unit (using the current bias mode). Here, the current level for T3 is �xed at 0 A. 
During the measurement the system applies an inverse voltage at T3 to keep the current there on the 0 A level. �e 
inverse voltage is equal to the resulting voltage of the signals applied at T1 and T2. However, this method cannot 
work for pulsed signals, since regulation of the inverse voltage is too slow. �erefore, the voltage at T3 is measured 
by the self-made impedance converter and monitored by the Keithley 4200-SCS. �e impedance converter exhib-
its a bandwidth of 8 MHz and a slew rate up to 2.8 V/μs. �e high input resistance of 3 GΩ supports that almost 
no current �ows through T3.
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