001     8079
005     20180208230728.0
024 7 _ |2 DOI
|a 10.1016/j.electacta.2009.03.026
024 7 _ |2 WOS
|a WOS:000267114900009
037 _ _ |a PreJuSER-8079
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Electrochemistry
100 1 _ |0 P:(DE-HGF)0
|a Pötting, K.
|b 0
245 _ _ |a Island dynamics on charged silver electrodes: Kinetic Monte-Carlo simulations
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2009
300 _ _ |a 4494 - 4500
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 1776
|a Electrochimica Acta
|v 54
|x 0013-4686
|y 19
500 _ _ |a K.R and W.S. gratefully acknowledge financial support by the Landes-stiftung Baden-Wurttemberg and by the Deutsche Forschungsgerneinschaft (SCHM 344/35-1). RQ. gratefully acknowledges financial support by the Deutscher Akademischer Austausch Dienst (DAAD). N.L. gratefully acknowledges financial support by the Deutsche Forschungsgerneinschaft and CONICET. The authors also thank Dr. M.C. Gimenez for providing us with her KMC program, and Dr. Y. Gohda for calculating the dipole moments.
520 _ _ |a The fluctuations of steps and the shapes of islands on metal surfaces generally depend strongly on the electrode potential, an effect that has been attributed to the interaction of local surface dipole moments with the double-layer field. In order to understand the details of this effect,we have calculated the relevant energies and dipole moments for the diffusion processes that govern the fluctuations of steps and island shapes on Ag(1 0 0). The corresponding rates have been used in kinetic Monte-Carlo simulations to explore the dynamics of these structures. Due to the field-dipole interactions the mobility of the surface becomes larger with increasing electrode potential. Fourier analysis allows us to determine the step stiffness and the kink energy, and from the shape of the islands we have obtained the line tension. All three quantities decrease with increasing double-layer field. (C) 2009 Elsevier Ltd. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Kinetic Monte-Carlo
653 2 0 |2 Author
|a Step fluctuations
653 2 0 |2 Author
|a Step stiffness
653 2 0 |2 Author
|a Surface dipole moments
653 2 0 |2 Author
|a Line tension
653 2 0 |2 Author
|a Kink energy
700 1 _ |0 P:(DE-HGF)0
|a Luque, N.B.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Quaino, P.M.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB5414
|a Ibach, H.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schmickler, W.
|b 4
773 _ _ |0 PERI:(DE-600)1483548-4
|a 10.1016/j.electacta.2009.03.026
|g Vol. 54, p. 4494 - 4500
|p 4494 - 4500
|q 54<4494 - 4500
|t Electrochimica acta
|v 54
|x 0013-4686
|y 2009
856 7 _ |u http://dx.doi.org/10.1016/j.electacta.2009.03.026
909 C O |o oai:juser.fz-juelich.de:8079
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB801
|d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)116962
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21